\text { A bit on the zeros of } D_\alpha f(z) \text { of a polynomial } f(z)

Downloads

Abstract

In this paper, we prove a variant of enestrom and kakeya theorem. Indeed, for a given a polynomial $f(z)$ with real coefficients, we are providing a bounded region such that any zero of $D_\alpha f(z)$ lie in this region must be a simple zero if coefficients of $D_\alpha^{\prime} f(z)$ are monotonic, and any zero of $D_\alpha f(z)$ which does not lie in this region must be a simple zero if coefficients of $D_\alpha^{\prime} f(z)$ are alternative.

Keywords:

Polynomial, , polar derivative, simple zeros,, Enestrom-Kakeya theorem.

Mathematics Subject Classification:

Mathematics
  • K. Praveen Kumar Department of Mathematics, Government Polytechnic, Vikarabad, DTE, Telangana-501102, India.
  • B. Krishna Reddy Department of Mathematics, UCS, OU, HYD, Telangana, India 500007
  • Pages: 360-368
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

Abdul Aziz, Q. G. Mahammad, On the zeros of certain class of polynomials and related analytic functions, $J$. Maths. Anal. Appli, 75(1980), 495-502.

Abdul Aziz, Q. G. Mahammad, Zero free regions for polynomials and some generalizations of Enestrom Kakeya theorem, Cana. math. bull, 27(3)(1984), 265-272.

Bairagi, vinay kumar, Saha, T. $K$. Mishra, On the location of zeros of certain polynomials, publication de L'institut mathematics, Nuvelle serie, vome, 99(113)(2016), 287 294.

C. Gangadhar, P. Ramulu and G. L Reddy, Zero free regions of polar derivatives of polynomial with restricted coefficients, $I J P E M, 4($ III)(2016), 67-74.

G. Eneström, Remarquee sur un théorème relatif aux racines de l'equation $a_n+ldots+a_0=0$ oul tous les coefficient sont et positifs, Töhokut Marh. J, 18(1920), 34-36.

G. L Reddy, P. Ramulu and C. Gangadhar, On the zeros of polar derivatives of polynomial, Journal of research in applied marhematics, 2(4)(2015), 07-10.

K. Praveen Kumar, B. Krishna Reddy, A note on the zeros of polar derivative of a polynomial, Malaya Journal of Marhematik, $8(2)(2020), 405-413$.

K. Praveen Kumar, B. Krishna Reddy, A note on the zeros of polar derivative of a polynomial with complex coefficients, J. Math. Comput. Scl, 10(4)(2020), 10041019.

M. H. Gulzar, B. A. Zargar, R. Akhter, On the zeros of the polar derivative of polynomial, Commintication nonlinear analysis, $6(1)(2019), 32-39$.

P. Ramulu and G. L. Reddy, On the zeros of polar derivatives, International joumal of recent research in mathematics computer science and information technology. $2(1)(2015), 143-145$.

[II] S. Kakeya, On the limits of the roots of an alegebraic equation with positive coefficient, Tohoku Math. J. 2(1912-1913), 140-142.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

K. Praveen Kumar, and B. Krishna Reddy. “\text { A Bit on the Zeros of } D_\alpha f(z) \text { of a Polynomial } f(z)”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 360-8, https://www.malayajournal.org/index.php/mjm/article/view/1038.