\text { A bit on the zeros of } D_\alpha f(z) \text { of a polynomial } f(z)
Downloads
Abstract
In this paper, we prove a variant of enestrom and kakeya theorem. Indeed, for a given a polynomial $f(z)$ with real coefficients, we are providing a bounded region such that any zero of $D_\alpha f(z)$ lie in this region must be a simple zero if coefficients of $D_\alpha^{\prime} f(z)$ are monotonic, and any zero of $D_\alpha f(z)$ which does not lie in this region must be a simple zero if coefficients of $D_\alpha^{\prime} f(z)$ are alternative.
Keywords:
Polynomial, , polar derivative, simple zeros,, Enestrom-Kakeya theorem.Mathematics Subject Classification:
Mathematics- Pages: 360-368
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
Abdul Aziz, Q. G. Mahammad, On the zeros of certain class of polynomials and related analytic functions, $J$. Maths. Anal. Appli, 75(1980), 495-502.
Abdul Aziz, Q. G. Mahammad, Zero free regions for polynomials and some generalizations of Enestrom Kakeya theorem, Cana. math. bull, 27(3)(1984), 265-272.
Bairagi, vinay kumar, Saha, T. $K$. Mishra, On the location of zeros of certain polynomials, publication de L'institut mathematics, Nuvelle serie, vome, 99(113)(2016), 287 294.
C. Gangadhar, P. Ramulu and G. L Reddy, Zero free regions of polar derivatives of polynomial with restricted coefficients, $I J P E M, 4($ III)(2016), 67-74.
G. Eneström, Remarquee sur un théorème relatif aux racines de l'equation $a_n+ldots+a_0=0$ oul tous les coefficient sont et positifs, Töhokut Marh. J, 18(1920), 34-36.
G. L Reddy, P. Ramulu and C. Gangadhar, On the zeros of polar derivatives of polynomial, Journal of research in applied marhematics, 2(4)(2015), 07-10.
K. Praveen Kumar, B. Krishna Reddy, A note on the zeros of polar derivative of a polynomial, Malaya Journal of Marhematik, $8(2)(2020), 405-413$.
K. Praveen Kumar, B. Krishna Reddy, A note on the zeros of polar derivative of a polynomial with complex coefficients, J. Math. Comput. Scl, 10(4)(2020), 10041019.
M. H. Gulzar, B. A. Zargar, R. Akhter, On the zeros of the polar derivative of polynomial, Commintication nonlinear analysis, $6(1)(2019), 32-39$.
P. Ramulu and G. L. Reddy, On the zeros of polar derivatives, International joumal of recent research in mathematics computer science and information technology. $2(1)(2015), 143-145$.
[II] S. Kakeya, On the limits of the roots of an alegebraic equation with positive coefficient, Tohoku Math. J. 2(1912-1913), 140-142.
Similar Articles
- Teena Liza John, T.K. Mathew Varkey, On some topological indices of line graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.