Fixed point theorems for orthogonal F-Suzuki contraction mappings on O-complete metric space with an applications

Downloads

Abstract


In this paper, we introduce the concepts of generalized orthogonal F-contraction and orthogonal F-Suzuki
contraction mappings and prove some fixed point theorems for a self mapping in orthogonal metric space. The
proved results generalize and extend some of the well known results in the literature. An example to support our
result is presented. As applications of the main results, we apply our main results to show the existence of a
unique solution of the first-order ordinary differential equation.

Keywords:

Orthogonal set, , orthogonal metric space, orthogonal continuous, orthogonal preserving,, orthogonal F-Suzuki contraction,, fixed point.

Mathematics Subject Classification:

Mathematics
  • Gunaseelan Man Department of Mathematics, Sri Sankara Arts and Science College(Autonomous), Affiliated to Madras University, Enathur, Kanchipuram, Tamil Nadu, India 631 561
  • Arul Joseph Gnanaprakasam Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India.
  • Lakshmi Narayan Mishra Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore 632 014, Tamil Nadu, India
  • Vishnu Narayan Mishra Department of Mathematics, Indira Gandhi National Tribal University, Laipur, Amarkantak, Anuppur, Madhya Pradesh, India 484887. https://orcid.org/0000-0002-2159-7710
  • Pages: 369-377
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

M. E. Gordji, M. Ramezani, M. De La Sen, and Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory $($ FPT), 18(2), (2017)569-578.

M. Eshaghi Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, Journal of Linear and Topological Algebra (JLTA), 6(3), 251-260.

K. Sawangsup, W. Sintunavarat and Y. J. Cho, Fixed point theorems for orthogonal $F$-contraction mappings on $O$ complete metric spaces, J. Fixed Point Theorey Appl., $(2020) 22: 10$.

M. Eshaghi and H. Habibi, Fixed point theory in $varepsilon$ connected orthogonal metric space, Shand Communications in Mathematical Analysis(SCMA) Vol. 16, No.1(2019), 35-46.

N. B. Gungor, and D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conference Proceedings, 2183, 040011 (2019).

O. Yamaod and W. Sintunavarat, On new orthogonal contractions in b-metric spaces, International Journal of Pure Mathematics, Vol. 5, 2018.

K. Sawangsup and W. Sintunavarat, Fixed point results for orthogonal $Z$-contraction mappings in $O$-complete metric space, International Joumal of Applied Physics and Mathematics, Vol. 10, No. 1, January 2020.

T. Senapati, L. K. Dey, B. Damjanović and A. Chanda, New fixed results in orthogonal metric spaces with an Application, Kragujevac Journal of Mathematics, Vol. $42(4)(2018), 505-516$

D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, 94(2012).

H. Piri, P. Kumam, Some fixed point theorems concerning $F$-contraction in complete metric spaces, Fixed Point Theory Appl. 210(2014).

N. Sharma, L. N. Mishra, V. N. Mishra, H. Almusawa, Endpoint approximation of standard three-step multivalued iteration algorithm for nonexpansive mappings, Applied Mathematics and Information Sciences, Vol. 15 , No. 1, (2021), pp. 73-81. DOI: 10.18576/amis/150109

N. Sharma, L. N. Mishra, V. N. Mishra, S. Pandey, Solution of Delay Differential equation via $N_1^v$ iteration algorithm, European J. Pure Appl. Math., Vol. 13, No. 5, (2020), pp. 1110-1130. DOI: https://doi.org/10.29020/nybg.ejpam.v13i5.3756.

L. N. Mishra, V. Dewangan, V. N. Mishra, S. Karateke, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, J. Math. Computer Sci., Vol. 22, Issue 2, (2021), pp. 97-109. doi: 10.22436/jmcs.022.02.01.

A. G. Sanatee, M. Iranmanesh, L. N. Mishra, V. N. Mishra, Generalized 2-proximal $mathrm{C}$-contraction mappings in complete ordered 2 -metric space and their best proximity points, Scientific publications of the state university of Novi pazar ser. A: Appl. Math. Inform. and Mech. vol. 12, 1 (2020), 1-11.

${ }^{[15]}$ L. N. Mishra, V. N. Mishra, P. Gautam, K. Negi, Fixed point Theorems for Cyclic-Ćirić-Reich-Rus contraction mapping in Quasi-Partial b-metric spaces, Scientific publications of the state university of Novi pazar ser. A: Appl. Math. Inform. and Mech. vol. 12, 1 (2020), 47-56.

L. N. Mishra, S. K. Tiwari, V. N. Mishra, I. A. Khan, Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces, Journal of Function Spaces, Volume 2015 (2015), Article ID 960827, 8 pages.

L. N. Mishra, S. K. Tiwari, V. N. Mishra, Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, Journal of Applied Analysis and Computation, Volume 5, Number 4, 2015, pp. 600-612. doi: $10.11948 / 2015047$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

Gunaseelan Man, Arul Joseph Gnanaprakasam, Lakshmi Narayan Mishra, and Vishnu Narayan Mishra. “Fixed Point Theorems for Orthogonal F-Suzuki Contraction Mappings on O-Complete Metric Space With an Applications”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 369-77, https://www.malayajournal.org/index.php/mjm/article/view/1041.