Certain topological indices and their polynomials of some cutting number nanostar Dendrimer NS[n]
Downloads
Abstract
Some theoretical results about nanostar Dendrimer by topological indices are explained in this research paper.
This paper details with 1st 2nd and 3rd cutting number Zagreb Index, Multiplicative and polynomial and also
reverse hyper-Zagreb cutting number index multiplicative and polynomial of nanostar Dendrimer.
Keywords:
Cutting number, Zagreb Polynomial, Index of Hyper-Zagreb, Reverse Index of Hyper-Zagreb, Reverse HyperZagreb polynomialMathematics Subject Classification:
Mathematics- Pages: 425-430
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
M. Aouchiche, P. Hansen, On a conjecture about the Randic index, Discr. Math., 307(2)(2007), 262-265.
Ashrafi, M. Saheli, The eccentric connectivity index of a new class of Nanostar Dendrimers, Optoelectron. Adv. Mater. Rapid Commun. 4(6)(2010), 898-899.
A. Astaneh Asl, G. H. Fath Tabar, Computing the first and third Zagreb polynomials of Cartesian product of graphs, Iranian J. Math. Chem., 2(2)(2011), 73-78.
A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure - activity correlations, $I n$ : steric effects in drug design, 1983, springer, Berlin, Heidelberg.
Buckly and F. Harary, Distance in Graphs, Addison Wesly, Reading 1990.
M. Bhanumathi, P. Gladyis, and G. Srividhya, On Some cutting number topological indices of Nanostar Dendrimer NS[n], Malaya Journal of Matematik, $8(4)(2020)$, 2177-2185.
N. De, S. M.A. Nayeem, Computing the F-index of Nanostar Dendrimers, pacific Sci. Rev. A: Nat. Sci. Eng., 18(1)(2016), 14-21.
E. Estrada, E. Uriate, Recent advances on the role of topological indices in drug discovery research, curr: Med. Chem., 8(13)(2001), 1573-1581.
G. H. Fath Tabar, old and new Zagreb index, MATCH commun. Math. Comput. Chem, 65(2011), 79-84.
G. H. Fath Tabar, Zagreb polynomial and Pi indices of some Nano Structures, Digest J. Nanomat. Biost, $4(1)(2009), 189-191$.
I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH commun. Math. Comput. Chem, 50(1)(2004), $83-92$.
D. James, A. T. Balaban, Topological indices and related descriptors in QSAR and QAPAR. CRC Press, 2000.
V. R. Kulli, Reverse Zagreb and reverse hyper - Zagreb indices and their polynomials of rhombus silicate networks. Ann. Pure Appl. Math. 16(2018), 47-51.
G. H. Shirdal, H. Rezapour, A. M. Sayadi, The hyper Zagreb index of graph operations. Iran. J. Math. Chem. $4(2013), 213-220$.
Similar Articles
- J. C. Kanani, V. J. Kaneria, Graceful labeling in a graph consisting chord with quadrilateral snake , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- J. C. Kanani, V. J. Kaneria, Graceful labeling of combination graph derived by coupling a graph with quadrilateral snake , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.