On the embedding of $Gamma$ -semigroup Amalgam

Downloads

Abstract

$\Gamma$ semigroup is introduced as a generalization of semigroups by $\mathrm{M} . \mathrm{K}$ Sen and Saha. In this paper we describe amalgam of two $\Gamma$-semigroups and discuss the embeddability of this amalgam. Further we obtained a necessary condition for the embeddability of completely $\alpha$-regular $\Gamma$-semigroup amalgam.

Keywords:

$Gamma $-semigroups, Semigroup Amalgam, $Gamma $-monomorphisms, free $Gamma $-product

Mathematics Subject Classification:

Mathematics
  • Pages: 449-455
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

A.Seth, Г-Group congruences on regular $Gamma$-Semigroups, IntJ.Math. & Math.Sci 15, 103-106.((1992).

Clifford, Alfred Hoblitzelle, and Gordon Bamford Preston. The algebraic theory of semigroups. Vol. 7. American Mathematical Soc., 1961.

Dey, I. M. S. Schreier systems in free products. Proceedings of the Glasgow Mathematical Association. Vol. 7. No. 02. Cambridge University Press, 1965.

$mathrm{H}$. Hedayati, Isomorphisms via Congruences on $Gamma$ 575, http://thaijmath.in.cmu.ac.th.

Howie, John M. An introduction to semigroup theory. Academic Press INC (London)Ltd 1976.

Howie, John M., Fundamentals of semigroup theory. The Clarendon Press, Oxford University Press, NewYork (1995).

M K Sen. On $Gamma$-semigroups. In Algebra and its applications (New Delhi, 1981), 301-308., Lecture Notes in Pure and Appl. Math., volume 91. Dekker, New York,1984.

M.K. Sen, N.K. Saha, Orthodox Г-semigroup I International. J. Math. & Math. Scl. ,VOL. 13 NO. 3 (1990) 527-534.

M.K. Sen, N.K. Saha, On -semigroup I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.

Neumann, Neumann, A survey on the embedding theory of group amalgams, (1954).

N Nobusawa. On a generalization of the ring theory. Osaka J. Math., 1:81-89, 1964

R.Chinram and K.Tinpun, Isomorphism Theorems for $Gamma$-Semigroups and ordered $Gamma$. Semigroups, Thai J.Math.,7(2),(2009) 231-241,

Shara, J. ON FREE Г-SEMIGROUPS. International Journal For Research In Mathematics And Statistics (ISSN: 2208-2662), 3(5), (2017) 15-28.

W E Barnes. On the Г-rings of Nobusawa. Pacific J. Math., $18(3): 411-422,1966$

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

M.A. Smisha, and P. G. Romeo. “On the Embedding of $Gamma$ -Semigroup Amalgam”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 449-55, https://www.malayajournal.org/index.php/mjm/article/view/1056.