Fuzzy contra $\theta g^{\prime \prime \prime}-$ continuous and irresolute functions in fuzzy topological spaces
Downloads
Abstract
In this paper, we introduce a new class of generalized mappings namely fuzzy contra $\theta g^{\prime \prime \prime}$-continuous and fuzzy contra $\theta g^{\prime \prime \prime}$-irresolute mappings in $f t s^{\prime}$ s. Some of their properties have been investigated.
Keywords:
\text { Fuzzy } \theta g^{\prime \prime \prime} \text {-continuous }, \text { fuzzy contra } \theta g^{\prime \prime \prime} \text {-continuous and fuzzy contra } \theta g^{\prime \prime \prime} \text {-irresolute mappings }Mathematics Subject Classification:
Mathematics- Pages: 515-518
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1) (1981), 14-32.
K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. (Math.), 12 (1991), 5-13.
G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86 (1997), 93-100.
G. Balasubramanian, On fuzzy-pre-separation axiom, Bull. Calcutta Math Soc., 90 (6) (1998), 427-434.
G. Balasubramanian, and V. Chandrasekar, Totally fuzzy semi continuous functions, Bull. Calcutta Math Soc., 92 (4) (2000), 305-312.
V. Chandrasekar and G. Anandajothi, $theta g^{prime prime prime}$-open sets in fuzzy topological spaces, Malaya Journal of Matematik, $S$ (1) (2020), 524-529.
V. Chandrasekar and G. Anandajothi, Another theta generalized closed sets in fuzzy topological spaces, International Journal of Mathematical Archive, 12 (1) (2017), 39-47.
C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
M. E. El-Shafei and A. Zakari, $theta$-generalized closed sets in fuzzy topological spaces, The Arabian Journal for Science and Engineering, 31 (2A ) (2006), 197-206.
E. Ekici and E. Kerre, On fuzzy contra-continuities, Advances in Fuzzy Mathematics, 1 (2006), 35-44.
Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28 (3) (1997), 351-360.
A. Hakeem and Othman, On fuzzy $theta$-generalized- semiclosed sets, Journal of Advanced Studies in Topology, 7 (2) (2016), 84-92.
M. Jeyaraman, J. Rajalakshmi and O. Ravi, Another generalization of closed sets in fuzzy topological spaces, International Journal of Mathematical Archive, 4 (8) (2013), 187-192.
N. Levine, Generalized closed sets in topology, Rendiconti del Circolo. Matematico di Palermo, 19 (2) (1970), 89-96.
S. R. Malghan and S. S. Benchalli, Open maps, closed maps and local compactness in fuzzy topological spaces, J. Math. Anal. Appl., 99 (1984), 338-349.
R. K. Saraf, M. Khanna, On gs-closed set in fuzzy topology, J. Indian Acad. Math., 25 (1) (2003), 133-143.
Zabidin Salleh and N. A. F. Abdul Wahab, $theta$-semigeneralized closed sets in fuzzy topological spaces, Bull. Malays. Math. Sci. Soc., 36 (4) (2013), 1151-1164.
Similar Articles
- Dinesh Selvaraj, Joseph Paramasivam Mathiyazhagan, A parameter uniform convergence for a system of two singularly perturbed initial value problems with different perturbation parameters and Robin initial conditions , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.