Fuzzy contra $\theta g^{\prime \prime \prime}-$ continuous and irresolute functions in fuzzy topological spaces

Downloads

Abstract

In this paper, we introduce a new class of generalized mappings namely fuzzy contra $\theta g^{\prime \prime \prime}$-continuous and fuzzy contra $\theta g^{\prime \prime \prime}$-irresolute mappings in $f t s^{\prime}$ s. Some of their properties have been investigated.

Keywords:

\text { Fuzzy } \theta g^{\prime \prime \prime} \text {-continuous }, \text { fuzzy contra } \theta g^{\prime \prime \prime} \text {-continuous and fuzzy contra } \theta g^{\prime \prime \prime} \text {-irresolute mappings }

Mathematics Subject Classification:

Mathematics
  • A. Saivarajan Department of Mathematics, Rajah Serfoji Government College, Thanjavur-613005, Tamil Nadu, India.
  • Pages: 515-518
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1) (1981), 14-32.

K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. (Math.), 12 (1991), 5-13.

G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems, 86 (1997), 93-100.

G. Balasubramanian, On fuzzy-pre-separation axiom, Bull. Calcutta Math Soc., 90 (6) (1998), 427-434.

G. Balasubramanian, and V. Chandrasekar, Totally fuzzy semi continuous functions, Bull. Calcutta Math Soc., 92 (4) (2000), 305-312.

V. Chandrasekar and G. Anandajothi, $theta g^{prime prime prime}$-open sets in fuzzy topological spaces, Malaya Journal of Matematik, $S$ (1) (2020), 524-529.

V. Chandrasekar and G. Anandajothi, Another theta generalized closed sets in fuzzy topological spaces, International Journal of Mathematical Archive, 12 (1) (2017), 39-47.

C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

M. E. El-Shafei and A. Zakari, $theta$-generalized closed sets in fuzzy topological spaces, The Arabian Journal for Science and Engineering, 31 (2A ) (2006), 197-206.

E. Ekici and E. Kerre, On fuzzy contra-continuities, Advances in Fuzzy Mathematics, 1 (2006), 35-44.

Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28 (3) (1997), 351-360.

A. Hakeem and Othman, On fuzzy $theta$-generalized- semiclosed sets, Journal of Advanced Studies in Topology, 7 (2) (2016), 84-92.

M. Jeyaraman, J. Rajalakshmi and O. Ravi, Another generalization of closed sets in fuzzy topological spaces, International Journal of Mathematical Archive, 4 (8) (2013), 187-192.

N. Levine, Generalized closed sets in topology, Rendiconti del Circolo. Matematico di Palermo, 19 (2) (1970), 89-96.

S. R. Malghan and S. S. Benchalli, Open maps, closed maps and local compactness in fuzzy topological spaces, J. Math. Anal. Appl., 99 (1984), 338-349.

R. K. Saraf, M. Khanna, On gs-closed set in fuzzy topology, J. Indian Acad. Math., 25 (1) (2003), 133-143.

Zabidin Salleh and N. A. F. Abdul Wahab, $theta$-semigeneralized closed sets in fuzzy topological spaces, Bull. Malays. Math. Sci. Soc., 36 (4) (2013), 1151-1164.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

A. Saivarajan. “Fuzzy Contra $\theta g^{\prime \prime \prime}-$ Continuous and Irresolute Functions in Fuzzy Topological Spaces”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 515-8, https://www.malayajournal.org/index.php/mjm/article/view/1068.