Zumkeller labeling of some path related graphs

Downloads

Abstract

A positive integer $n$ is said to be Zumkeller number if its positive factors can be partitioned into 2 disjoint parts with the equal sum, that is each part with sum $\sigma(n) / 2$. Let $G=(V(G), E(G))$ be a graph. An one to one function $f$ defined on $V(G)$ to a subset of natural numbers is termed as Zumkeller labeling of $G$ if the induced function $f^*: E(G) \rightarrow \mathbb{N}$ defined as $f^*(x y)=f(x) f(y)$ assigns a Zumkeller number for all $x y \in E(G), x, y \in V(G)$. A graph $G=(V(G), E(G))$ admits Zumkeller labeling is called a Zumkeller graph. In this manuscript, we investigate Zumkeller labeling for several classes of path graph.

Keywords:

Graph labeling, Zumkeller number

Mathematics Subject Classification:

Mathematics
  • Linta K. Wilson Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India.
  • V.M. Bebincy Research Scholar, Reg No:19213112092008, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli– 629152, Tamil Nadu, India.
  • Pages: 519-523
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

Alex Rosa, On certain valuations of the vertices of a graph, In Theory of Graphs- International symposium, $(1966), 349-359$.

B.J.Balamurugan, K. Thirusangu, D.G. Thomas, Strongly multiplicative Zumkeller labeling of graphs, Int. Conf. Inf. Math. Sci., (2013), 349-354.

B.J.Balamurugan, K.Thirusangu, D.G.Thomas, Algorithms for Zumkeller labeling of full binary trees and squar grids, Advances in Intelligent Systems and Comput ing, Springer, 325(2015), 183-192.

B.J.Balamurugan, K.Thirusangu, D.G.Thomas, Zumkeller labeling Algorithms for complete bipartite graphs and wheel graphs, Advances in Intelligent Systems and computing, Springer, 324(2015), $405-413$.

B.J. Balamurugan1, K. Thirusangu, D.G. Thomas 3 and B.J. Murali, k-Zumkeller labeling of Graphs, International Journal of Engineering and Technology, 7 (4.10), $(2018), 460-463$.

B. J. Balamurugan and R. Madura Meenakshi, Zumkeller labeling of Complete Graphs, International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249-8958, Volume-9 Issue-1S3, December 2019

S. Clark, J. Dalzell, J. Holliday, D. Leach, M. Liatti, M. Walsh, Zumkeller numbers, presented in the Mathematical Abundance Conference at Illinois State University on April 18 th, 2008.

Joseph A. Gallian, A Dynamic Survey of Graph labeling, The Electronic Journal Of Combinatorics, (2019).

K. K. Kanani and T. M. Chhaya,Strongly Multiplicative labeling of Some Path Related Graphs, International Journal of Mathematics and Computer Applications Research (IJMCAR) issn( $mathrm{P})$ : 2249-6955; issn( $mathrm{E})$ : 2249-8060Vol. 5, Issue 5, Oct 2015, 1-4.

Pankaj Jyoti Mahanta, Manjil P. Saikia, and Daniel Yaqubi, Some Properties of Zumkeller Numbers And KLayered Numbers, Journal of Number Theory, December 2020, 217:218-236, DOI: 10.1016/j.jnt.2020.05.003.

S.Sriram, R.Govindarajan and K.Thirusangu,Zumkeller labeling of Jewel Graph and Jelly Fish Graph, Journal of Information and Computational Science, Volume 9 Issue $12-2019$.

S. K. Vaidya and N. J. Kothari,Line Gracefulness of Some Path Related Graphs, International Journal Of Mathematics And Scientific Computing (issn: 2231-5330), vol. 4, no. $1,2014$.

Yuejian Peng and K.P.S. Bhaskara Rao,On Zumkeller numbers, Journal of Number Theory ,133 (2013), $1135-1155$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

Linta K. Wilson, and V.M. Bebincy. “Zumkeller Labeling of Some Path Related Graphs”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 519-23, https://www.malayajournal.org/index.php/mjm/article/view/1069.