Importance of p__KdV equation in target tracking and its applications

Downloads

Abstract

In this paper we use Adomian Decomposition Method to solve time fractional p

Keywords:

Time fractional potential KdV equation, Target tracking in sensor, Caputo fractional derivative, Adomian Decomposition Method, Mathematica

Mathematics Subject Classification:

Mathematics
  • S. R. Kulkarni Department of Mathematics, Model College, Dombivali, Thane-421201, Maharashtra, India.
  • K. C. Takale Department of Mathematics, RNC Arts, JDB Commerce and NSC Science College, Nashik-Road, Nashik-422101, India.
  • Shrikisan Gaikwad Department of Mathematics, New Atrs, Commerce and Science College, Ahmadnagar-414001, India.
  • Pages: 577-582
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

Jacob Barhen, et.al. Fast neural algorithms for detecting moving targets in highly noisy environments, Calfornia Institute of Technology, Pasadena, CA 91109.

K.S.Kaawaase, F.Chi.J.Shuhong, Q.Bo.Ji, A review on selected Target Tracking Algorithms, Information Technology Journal, 10(4)(2011), 691-702.

Igor Kulikov, Michail Zak Detection of Moving Targets Using Soliton Resonance Effect, Advances in Remote Sensing, 1(2012), 58-63.

M. Javidi, B. Ahmed, Numerical solution of fractional partial differential equations by numerical Laplace inversion techniques, Advances in Difference Equations, $(2013)$.

F. Mainardi, Fractional relaxtation - oscillation and fractional diffusion wave phenonmenon, Chaos, solition, fractals, $7(1996), 1461-1477$.

K. S. Miller, B. Ross, An introduction to the Fractional calculus and Fractional differential equation, John Wiley and sons Inc. Newyork, 1993.

S. Momani, Z. Odibat, Analytical solutions of a time fractional Navier -Stokes equation by Adomian decomposition method, Appl.Math.Comput. 177(2)(2006), 488-494.

S. Momani, Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos, solition, fractals, 31(5)(2007), 1248-1255.

S. Momani, Z. Odibat, Approximate solutions for boundary value problems of time fractional wave equation, Appl.Math.Comput, 181(1)(2006), 767-774.

Mohamed A. E. Herzallah, Ahmed M. A., El-Sayed, On the fractional order diffusion wave process, Rom. Journ.Physc., 55(2010), 53-69.

K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, New York, 1974.

I. Podlubny, Fractional Differential equations, Academic Press, San Diago, 1999.

W. Schneider, W. Wyss, Fractional Diffusion equation and wave equation, Int.J.Math. Phys., 30(1989), 134-144.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

S. R. Kulkarni, K. C. Takale, and Shrikisan Gaikwad. “Importance of p__KdV Equation in Target Tracking and Its Applications”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 577-82, https://www.malayajournal.org/index.php/mjm/article/view/1083.