Importance of p__KdV equation in target tracking and its applications
Downloads
Abstract
In this paper we use Adomian Decomposition Method to solve time fractional p
Keywords:
Time fractional potential KdV equation, Target tracking in sensor, Caputo fractional derivative, Adomian Decomposition Method, MathematicaMathematics Subject Classification:
Mathematics- Pages: 577-582
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
Jacob Barhen, et.al. Fast neural algorithms for detecting moving targets in highly noisy environments, Calfornia Institute of Technology, Pasadena, CA 91109.
K.S.Kaawaase, F.Chi.J.Shuhong, Q.Bo.Ji, A review on selected Target Tracking Algorithms, Information Technology Journal, 10(4)(2011), 691-702.
Igor Kulikov, Michail Zak Detection of Moving Targets Using Soliton Resonance Effect, Advances in Remote Sensing, 1(2012), 58-63.
M. Javidi, B. Ahmed, Numerical solution of fractional partial differential equations by numerical Laplace inversion techniques, Advances in Difference Equations, $(2013)$.
F. Mainardi, Fractional relaxtation - oscillation and fractional diffusion wave phenonmenon, Chaos, solition, fractals, $7(1996), 1461-1477$.
K. S. Miller, B. Ross, An introduction to the Fractional calculus and Fractional differential equation, John Wiley and sons Inc. Newyork, 1993.
S. Momani, Z. Odibat, Analytical solutions of a time fractional Navier -Stokes equation by Adomian decomposition method, Appl.Math.Comput. 177(2)(2006), 488-494.
S. Momani, Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos, solition, fractals, 31(5)(2007), 1248-1255.
S. Momani, Z. Odibat, Approximate solutions for boundary value problems of time fractional wave equation, Appl.Math.Comput, 181(1)(2006), 767-774.
Mohamed A. E. Herzallah, Ahmed M. A., El-Sayed, On the fractional order diffusion wave process, Rom. Journ.Physc., 55(2010), 53-69.
K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, New York, 1974.
I. Podlubny, Fractional Differential equations, Academic Press, San Diago, 1999.
W. Schneider, W. Wyss, Fractional Diffusion equation and wave equation, Int.J.Math. Phys., 30(1989), 134-144.
Similar Articles
- Keerthi G. Mirajkar, Akshata Morajkar, Strongly perfect Plick and Lict graphs for some class of graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.