On solutions of the Diophantine equation \(L_n+L_m=3^a\)
Downloads
DOI:
https://doi.org/10.26637/mjm904/007Abstract
Let \((L_n)_{n\geq 0}\) be the Lucas sequence given by \(L_0 = 2, L_1 = 1\) and \(L_{n+2} = L_{n+1}+L_n\) for \(n \geq 0\). In this paper, we are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential Diophantine equation \(L_n + L_m = 3^{a}\) in nonnegative integers \(n, m,\) and \(a\). The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.
Keywords:
Linear forms in logarithms, Diophantine equations, Perfect powers, Fibonacci sequence, Lucas sequenceMathematics Subject Classification:
11B39 , 11J86- Pages: 228-238
- Date Published: 01-10-2021
- Vol. 9 No. 04 (2021): Malaya Journal of Matematik (MJM)
A. Baker And G. Wüstholz, Logarithmic and Diophantine Geometry, Vol 9 New Mathematical Monographs (Cambridge University Press), 2007.
A. Baker and H. Davenport, The equations $3 x^2-2=y^2$ and $8 x^2-7=z^2$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137.
J. J. Bravo And F. Lucas, Powers of Two as Sums of Two Lucas Numbers, Journal of Integers Sequences, 17(2014) Article 14.8.3
J.J. Bravo And F. LucA, On the Diophantine Equation $F_n+F_m=2^a$, Quaestiones Mathematicae, 39(3)(2016), 391-400.
Y. Bugeaud, M. Mignotte, And S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math., 163(2006), 969-1018.
A. Dujella And A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49(195)(1998), 291-306.
M. Laurent, M. Mignotte, and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, (French) (Linear forms in two logarithms and interpolation determinants), J. Number Theory, 55(1995), 285-321.
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat., 64(2000), 125-180. Translation in Izv. Math., $mathbf{6 4}(2000), 1217-1269$.
Pagdame Tiebekabe and Ismaïla Diouf, On solutions of the Diophantine equations $F_{n_1}+F_{n_2}+F_{n_3}+$ $F_{n_4}=2^a$, Journal of Algebra and Related Topics, Accepted to On-line Publish, 2021.
Pagdame Tiebekabe and Ismaïla Diouf, Powers of Three as Difference of Two Fibonacci Numbers, $J P$ Journal of Algebra, Number Theory and Applications, 49(2)(2021), 185-196.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pagdame Tiebekabe, Dear Professor Diouf
This work is licensed under a Creative Commons Attribution 4.0 International License.