On solutions of the Diophantine equation Ln+Lm=3a
Downloads
DOI:
https://doi.org/10.26637/mjm904/007Abstract
Let (Ln)n≥0 be the Lucas sequence given by L0=2,L1=1 and Ln+2=Ln+1+Ln for n≥0. In this paper, we are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential Diophantine equation Ln+Lm=3a in nonnegative integers n,m, and a. The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.
Keywords:
Linear forms in logarithms, Diophantine equations, Perfect powers, Fibonacci sequence, Lucas sequenceMathematics Subject Classification:
11B39 , 11J86- Pages: 228-238
- Date Published: 01-10-2021
- Vol. 9 No. 04 (2021): Malaya Journal of Matematik (MJM)
A. Baker And G. Wüstholz, Logarithmic and Diophantine Geometry, Vol 9 New Mathematical Monographs (Cambridge University Press), 2007.
A. Baker and H. Davenport, The equations $3 x^2-2=y^2$ and $8 x^2-7=z^2$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137.
J. J. Bravo And F. Lucas, Powers of Two as Sums of Two Lucas Numbers, Journal of Integers Sequences, 17(2014) Article 14.8.3
J.J. Bravo And F. LucA, On the Diophantine Equation $F_n+F_m=2^a$, Quaestiones Mathematicae, 39(3)(2016), 391-400.
Y. Bugeaud, M. Mignotte, And S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math., 163(2006), 969-1018.
A. Dujella And A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49(195)(1998), 291-306.
M. Laurent, M. Mignotte, and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, (French) (Linear forms in two logarithms and interpolation determinants), J. Number Theory, 55(1995), 285-321.
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat., 64(2000), 125-180. Translation in Izv. Math., $mathbf{6 4}(2000), 1217-1269$.
Pagdame Tiebekabe and Ismaïla Diouf, On solutions of the Diophantine equations $F_{n_1}+F_{n_2}+F_{n_3}+$ $F_{n_4}=2^a$, Journal of Algebra and Related Topics, Accepted to On-line Publish, 2021.
Pagdame Tiebekabe and Ismaïla Diouf, Powers of Three as Difference of Two Fibonacci Numbers, $J P$ Journal of Algebra, Number Theory and Applications, 49(2)(2021), 185-196.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pagdame Tiebekabe, Dear Professor Diouf

This work is licensed under a Creative Commons Attribution 4.0 International License.