On solutions of the Diophantine equation \(L_n+L_m=3^a\)

Downloads

DOI:

https://doi.org/10.26637/mjm904/007

Abstract

Let \((L_n)_{n\geq 0}\) be the Lucas sequence given by \(L_0 = 2, L_1 = 1\) and \(L_{n+2} = L_{n+1}+L_n\) for \(n \geq 0\).  In this paper, we are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential Diophantine equation \(L_n + L_m = 3^{a}\) in  nonnegative integers \(n, m,\) and \(a\).  The proof of our main theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.

Keywords:

Linear forms in logarithms, Diophantine equations, Perfect powers, Fibonacci sequence, Lucas sequence

Mathematics Subject Classification:

11B39 , 11J86
  • Pagdame Tiebekabe Cheikh Anta Diop University, Faculty of Science, Department of Mathematics and Computer science, Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications (LACGAA) Dakar, Senegal.
  • Ismaïla Diouf University of Kara, Sciences and Tecnologies Faculty (FaST), Department of Mathematics and Computer science, Kara, Togo. PoBOX: 43
  • Pages: 228-238
  • Date Published: 01-10-2021
  • Vol. 9 No. 04 (2021): Malaya Journal of Matematik (MJM)

A. Baker And G. Wüstholz, Logarithmic and Diophantine Geometry, Vol 9 New Mathematical Monographs (Cambridge University Press), 2007.

A. Baker and H. Davenport, The equations $3 x^2-2=y^2$ and $8 x^2-7=z^2$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137.

J. J. Bravo And F. Lucas, Powers of Two as Sums of Two Lucas Numbers, Journal of Integers Sequences, 17(2014) Article 14.8.3

J.J. Bravo And F. LucA, On the Diophantine Equation $F_n+F_m=2^a$, Quaestiones Mathematicae, 39(3)(2016), 391-400.

Y. Bugeaud, M. Mignotte, And S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math., 163(2006), 969-1018.

A. Dujella And A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49(195)(1998), 291-306.

M. Laurent, M. Mignotte, and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, (French) (Linear forms in two logarithms and interpolation determinants), J. Number Theory, 55(1995), 285-321.

E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat., 64(2000), 125-180. Translation in Izv. Math., $mathbf{6 4}(2000), 1217-1269$.

Pagdame Tiebekabe and Ismaïla Diouf, On solutions of the Diophantine equations $F_{n_1}+F_{n_2}+F_{n_3}+$ $F_{n_4}=2^a$, Journal of Algebra and Related Topics, Accepted to On-line Publish, 2021.

Pagdame Tiebekabe and Ismaïla Diouf, Powers of Three as Difference of Two Fibonacci Numbers, $J P$ Journal of Algebra, Number Theory and Applications, 49(2)(2021), 185-196.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2021

How to Cite

Tiebekabe, P., and I. Diouf. “On Solutions of the Diophantine Equation \(L_n+L_m=3^a\)”. Malaya Journal of Matematik, vol. 9, no. 04, Oct. 2021, pp. 228-3, doi:10.26637/mjm904/007.