Logarithmic coefficients for starlike and convex functions of complex order defined by subordination
Downloads
Abstract
The aim of this paper is to find the bounds for the logarithmic coefficients $\gamma_n$ of the general classes of starlike and convex functions of complex order, $S_d^*(\Psi)$ and $K_d(\Psi)$ respectively. Our results would generalize some of the previous paper like [1] E. A. Adegani et al., [3] Ali et al.,etc.
Keywords:
Starlike function and convex function of Complex order, subordination, logarithmic coefficientsMathematics Subject Classification:
Mathematics- Pages: 665-669
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
[I] Adegani E.A., Cho N.E. and Jafari M., Logarithmic Coefficients for Univalent Functions Defined by Subordination, Mathematics 2019, 7,408;doi: 10.3390
KayumovI.R., On Brennan's conjecture for a special class of functions.Math.Notes2005,78,498-502. [CrossRef].
Ali M.F., Vasudevarao A., On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc. 2018, 146, 1131-1142.
Nasr M_A. and Aouf M.K., Mansoura Sci. Bull Egypt, $1982,9,565-82$.
Ma W.C.,Minda D. A.,Unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Intemat Press: Cambridge, MA, USA, 1992, 157-169.
DurenP.L. ,Univalent Functions; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
Kumar U.P.,Vasudevarao A., Logarithmic coefficients for certain subclasses of close-to-convex functions. Monatsh. Math. 2018, 187, 543-563.
[$l Nehari $Z$, Conformal Mapping: McGraw-Hill: New York, NY, USA, 1952.
Ruscheweyh S.,Stankiewicz J., Subordination under convex univalent function. Bull. Pol. Acad. Sci. Math. 1985, 33, 499-502.
Rogosinski W., On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48-82.
Prokhorov D.V.,Szynal J., Inverse coefficients for $(alpha ; beta)$ convex functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1984, 35, 125-143.
Ruscheweyh S., New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109-115.
RuscheweyhS_, Sheil-Small, T. Hadamard product of schlicht functions and the Poyla Schoenberg conjecture. Comment. Math. Helv. 1973, 48, 119-135
Ponnusamy S., Sharma N.L. Wirths K.J., Logarithmic Coefficients of the Inverse of Univalent Functions. Results Math. 2018, 73, 160 .
Similar Articles
- M. Rajesh, On fuzzy $\gamma^*$ continuity with compare other forms of continuity in fuzzy topological space , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.