Onto minus domination number of paths and cycles
Downloads
Abstract
Let $G=(V, E)$ be a graph with $\mathrm{n}$ vertices. An onto minus dominating function of a graph $G$ is a minus dominating function of $G$ which is onto. The onto minus domination number of a graph $G$ is a minimum weight of a set of onto minus dominating functions of $G$. In this paper we discuss the onto minus domination number of a path $P_n$, cycle $C_n$.
Keywords:
Onto Minus Dominating Function, Onto Minus Domination Number, Paths, CyclesMathematics Subject Classification:
Mathematics- Pages: 681-683
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
Allan, R.B. and Laskar, R.C. - On domination, independent domination numbers of a graph. Discrete Math., 23 (1978), 73-76.
J.A. Bondy and U.S.R. Murty: Graph Theory with Applications. Macmillan, New York, 1976.
Cockayne, E. J. and Mynhardt, C.M. Convexity of extremal domination- related functions of graphs In: Domination in graphs-Advanced Topics, (Ed.T.W.Haynes, S.T. Hedetniemi, P.J. Slater), Marcel Dekker, New York, (1998), 109-131.
J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A.McRae: Minus domination in graphs. Discrete Math. 199(1999), 35-47.
J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A. McRae: Minus Domination in regular graphs. Discrete Math. 49(1996), 311-312.
J. H. Hattingh, A. A. McRae and Elna Ungerer: Minus k-subdomination in graphs III, Australasian Journal of Combinatorics, 17(1998), pp.69-76.
T.W. Haynes, S.T. Hedetniemi and P.J. Slater: Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
T.W. Haynes, S. T. Hedetniemi and P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
O. Ore, Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI), 1962.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.