Onto minus domination number of paths and cycles

Downloads

Abstract

Let $G=(V, E)$ be a graph with $\mathrm{n}$ vertices. An onto minus dominating function of a graph $G$ is a minus dominating function of $G$ which is onto. The onto minus domination number of a graph $G$ is a minimum weight of a set of onto minus dominating functions of $G$. In this paper we discuss the onto minus domination number of a path $P_n$, cycle $C_n$.

Keywords:

Onto Minus Dominating Function, Onto Minus Domination Number, Paths, Cycles

Mathematics Subject Classification:

Mathematics
  • S. Jerlin Mary Research Scholar, Reg No: 19123162092002, Department of Mathematics, Scott Christian College (Autonomous) Nagercoil-629003, Kanyakumari District, Tamil Nadu, India.
  • Y.S. Irine Sheela Department of Mathematics, Scott Christian College (Autonomous) Nagercoil-629003, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.
  • Pages: 681-683
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

Allan, R.B. and Laskar, R.C. - On domination, independent domination numbers of a graph. Discrete Math., 23 (1978), 73-76.

J.A. Bondy and U.S.R. Murty: Graph Theory with Applications. Macmillan, New York, 1976.

Cockayne, E. J. and Mynhardt, C.M. Convexity of extremal domination- related functions of graphs In: Domination in graphs-Advanced Topics, (Ed.T.W.Haynes, S.T. Hedetniemi, P.J. Slater), Marcel Dekker, New York, (1998), 109-131.

J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A.McRae: Minus domination in graphs. Discrete Math. 199(1999), 35-47.

J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A. McRae: Minus Domination in regular graphs. Discrete Math. 49(1996), 311-312.

J. H. Hattingh, A. A. McRae and Elna Ungerer: Minus k-subdomination in graphs III, Australasian Journal of Combinatorics, 17(1998), pp.69-76.

T.W. Haynes, S.T. Hedetniemi and P.J. Slater: Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.

T.W. Haynes, S. T. Hedetniemi and P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.

O. Ore, Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI), 1962.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

S. Jerlin Mary, and Y.S. Irine Sheela. “Onto Minus Domination Number of Paths and Cycles”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 681-3, https://www.malayajournal.org/index.php/mjm/article/view/1112.