Inclusion properties for subclasses of multivalent regular functions defined on the unit disk
Downloads
Abstract
For subclasses of p-valent regular functions defined on the open unit disc, we prove certain inclusion theorems
using multiplier and integral transform operator.
Keywords:
Multivalent regular functions, subordination, multiplier transform operator, Integral transform operator, Inclusion theoremsMathematics Subject Classification:
Mathematics- Pages: 684-689
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
M.K. Aouf, R.M. El-Ashwah and S.M. El-Deeb, Some inequalities for certain $p$-valent functions involving extended multiplier tansformations, Proc. Pak. Acad. $S c i, 46(4)$ (2009), 217-221.
S.D. Bernadi, Convex and starlike univalent functions, Trans. Amer. Marh. Soc., 135 (1969), 429-446.
A. Catas, On certain classes of p-valent functions defined by new multiplier transfomations, In Proc book International Symposium on Geometric Function Theory and Applications, TC Istanbul Kultur Univ., Turkey $(2007), 241-250$.
N.E. Cho and H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier trasformations, Math. Comput. Modelling, $37(1-2)(2003), 39-49$.
N.E. Cho and T.H. Kim, Multiplier tansformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
P. Eenigenberg, S.S. Miller, P.T. Mocanu and M.O. Reade, On a Briot-Bouquet differential subordinations, General inequalities, Birkhauser-Verlag, Basel, 3 (1983), 339-348.
A.W. Goodman, Univalent functions, Vol. I,II, Mariner Tampa, Florida, 1983 .
[&] W.K. Hayman, Multivalent functions, Cambridge Tracks in Mathematics and Math. Physics, Cambridge university press, Cambridge (London) no. 48 (1967).
S.S. Miller and P. Mocanu, Differential Subordinations: Theory and Applications, Series in Pure and Applied Mathematics, 225 (2000).
S.S. Miller and P.T. Thomas, On some classes of first order differential subordinations, Michigan Marh. J., $32(2)(1985), 185-195$.
[I1] $mathrm{S}$. Owa, On certain classes of p-valent functions with negative coefficients, Simon Sievin, 59(4) (1985), 385402.
C. Selvaraj and C. Santhosh Moni, Classes of analytic functions of complex order involving a family of Generalized differential operators, Tansui Oxford Jounal of mathematical Sciences, 26(3) (2010), 345354 .
C. Selvaraj and K. Selvakumaran, On certain classes of Multivalent functions involving a Generalized Differential operator, Bulletin of the Korean Math. Soc, $46(5)(2009), 905-916$.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.