Inclusion properties for subclasses of multivalent regular functions defined on the unit disk

Downloads

Abstract

For subclasses of p-valent regular functions defined on the open unit disc, we prove certain inclusion theorems
using multiplier and integral transform operator.

Keywords:

Multivalent regular functions, subordination, multiplier transform operator, Integral transform operator, Inclusion theorems

Mathematics Subject Classification:

Mathematics
  • S. Chandralekha Department of Mathematics, Presidency College, Chennai-600005, Tamil Nadu, India.
  • Pages: 684-689
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

M.K. Aouf, R.M. El-Ashwah and S.M. El-Deeb, Some inequalities for certain $p$-valent functions involving extended multiplier tansformations, Proc. Pak. Acad. $S c i, 46(4)$ (2009), 217-221.

S.D. Bernadi, Convex and starlike univalent functions, Trans. Amer. Marh. Soc., 135 (1969), 429-446.

A. Catas, On certain classes of p-valent functions defined by new multiplier transfomations, In Proc book International Symposium on Geometric Function Theory and Applications, TC Istanbul Kultur Univ., Turkey $(2007), 241-250$.

N.E. Cho and H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier trasformations, Math. Comput. Modelling, $37(1-2)(2003), 39-49$.

N.E. Cho and T.H. Kim, Multiplier tansformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.

P. Eenigenberg, S.S. Miller, P.T. Mocanu and M.O. Reade, On a Briot-Bouquet differential subordinations, General inequalities, Birkhauser-Verlag, Basel, 3 (1983), 339-348.

A.W. Goodman, Univalent functions, Vol. I,II, Mariner Tampa, Florida, 1983 .

[&] W.K. Hayman, Multivalent functions, Cambridge Tracks in Mathematics and Math. Physics, Cambridge university press, Cambridge (London) no. 48 (1967).

S.S. Miller and P. Mocanu, Differential Subordinations: Theory and Applications, Series in Pure and Applied Mathematics, 225 (2000).

S.S. Miller and P.T. Thomas, On some classes of first order differential subordinations, Michigan Marh. J., $32(2)(1985), 185-195$.

[I1] $mathrm{S}$. Owa, On certain classes of p-valent functions with negative coefficients, Simon Sievin, 59(4) (1985), 385402.

C. Selvaraj and C. Santhosh Moni, Classes of analytic functions of complex order involving a family of Generalized differential operators, Tansui Oxford Jounal of mathematical Sciences, 26(3) (2010), 345354 .

C. Selvaraj and K. Selvakumaran, On certain classes of Multivalent functions involving a Generalized Differential operator, Bulletin of the Korean Math. Soc, $46(5)(2009), 905-916$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

S. Chandralekha. “Inclusion Properties for Subclasses of Multivalent Regular Functions Defined on the Unit Disk”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 684-9, https://www.malayajournal.org/index.php/mjm/article/view/1113.