On strict strong coloring of central graphs
Downloads
Abstract
A strict strong coloring of a graph $G$ is a proper coloring of $G$ in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of $G$ is called the strict strong chromatic number of $G$ and is denoted by $\chi_{s s}(G)$. In this paper we discuss some results on strict strong chromatic number of central graphs.
Keywords:
Proper coloring, strict strong coloring, strict strong chromatic number, central graphsMathematics Subject Classification:
Mathematics- Pages: 697-700
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
M.O. Albertson, S. Grossman and R. Haas, Partial list colorings, Discrete Mathematics, 214 (1-3) (2000), 235 240.
S. Alikhani and N. Ghanbari, Total dominator chromatic number of specific graphs, arXiv: $1511.01652 mathrm{v} 1$.
G. Bagan, H.B. Merouane, M. Haddad and H. Kheddouci, On some domination colorings of graphs, Discrete Applied Mathematics, 230 (2017), 34-50.
J.A. Bondy and U.S.R. Murthy, Graph Theory with Applications, The Macmillan Press LTD, 1976.
I. Caragiannisa, C. Kaklamanisa and P. Persianob, Edge coloring of bipartite graphs with constraints, Theoretical Computer Science, 270 (1-2) (2002), 361-399.
M. Chellali and L. Volkmann, Relations between the lower domination parameters and the chromatic number of a graph, Discrete Mathematics, 274 (1-3) (2004), 1-8.
G. Chen, A. Gyarfas and R. Schelp, Vertex colorings with a distance restriction, Discrete Mathematics, 191 (1-3) $(1998), 65-82$.
J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, On Graphs Having Domination Number Half Their Order, Periodica Mathematica Hungarica, 16 (4) (1985), 287 293.
R. Gera, S. Horton and C. Rasmussen, Dominator colorings and safe clique partitions, Congr. Numer, 181 (2006) 19.32.
N. Ghanbari and S. Alikhani, More on the total dominator chromatic number of a graph, Jour nal of Information and Optimization Sciences, DOI: $10.1080 / 02522667.2018 .1453665$.
M. Haddad, and $mathrm{H}$. Kheddouci, A strict strong coloring of trees, Information Processing Letters, 109 (18) (2009), $1047-1054$.
S.M. Hedetniemi, S.T. Hedetniemi, A.A. Mcrae and J.R.S. Blair, Dominator coloring of graphs, (2006, preprint)
M.A. Henning, Total dominator colorings and total domination in graphs, Graphs and Combinatorics 31 (2015), 953-974.
Michael A. Henning and Anders Yeo, Total Domination and Matching Numbers in Claw-Free Graphs, The Electronic Journal of Combinatorics, 13 (2006), R59.
A. Mohammed Abid and T.R. Ramesh Rao, Dominator Coloring of mycielskian graphs, Australasian Journal of Combinatorics 73 (2) (2019), 274-279.
A. Mohammed Abid and T.R. Ramesh Rao, Dominator Coloring changing and stable graphs upon vertex removal, Journal of Combin. Math and Combin. Comp. 112 (2020), 103-113.
A. Mohammed Abid and T.R. Ramesh Rao, On strict strong coloring of graphs, Discrete Mathematics, Algorithms and applications, https://doi.org/10.1142/S1793830921500403
D. Seinsche, On a Property of the Class of $n$-colorable Graphs, J. Combin. Theory Ser. B, 16 (1974), 191-193.
I.E. Zverovich, A new kind of graph coloring, J. Algorithms 58 (2) (2006), 118-133.
Similar Articles
- S. Chandralekha, Inclusion properties for subclasses of multivalent regular functions defined on the unit disk , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.