On some fuzzy hyponormal operators

Downloads

DOI:

https://doi.org/10.26637/MJM0704/0001

Abstract

In this work,we focus our study on Fuzzy hyponormal operators acting on a fuzzy Hilbert space(FH space).we have given some properties of Fuzzy hyponormal operators on a FH space.And also we introduced the definition of Fuzzy class (N) operator acting on a Fuzzy Banach space (FB-space) and some definitions, theorems are discussed in detail.

Keywords:

Fuzzy Banach Space, Fuzzy Hilbert Space, Fuzzy Normal Operator, Fuzzy Hyponormal Operator, Fuzzy class (N).

Mathematics Subject Classification:

Mathematics
  • A. Radharamani Department of Mathematics, Chikkanna Government Arts College, Tirupur-641604, Tamil Nadu, India
  • A. Brindha Department of Mathematics, Tiruppur Kumaran College for Women, Tirupur-641687, Tamil Nadu, India.
  • Pages: 607-611
  • Date Published: 01-10-2019
  • Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)

A. Radharamani, A. Brindha, Fuzzy hyponormal operator in Fuzzy Hilbert space, International Journal of Mathematical Archive (IJMA), 10(1)(2019), 6-12.

A.Radharamani, A.Brindha, S.Maheswari, Fuzzy Normal Operator in fuzzy Hilbert space and its properties, IOSR Journal of Engineering, 8(7)(2018), 1-6.

Sudad.M. Rasheed, Self- adjoint fuzzy operator in fuzzy Hilbert space and its properties, Journal of Zankoy Sulaimani, 19(1)(2017), 233-238.

K.Katsaras, Fuzzy topological vector space-II, Fuzzy Sets and Systems, 12(1984), 143-154.

B. Punnose and S. Kuriakose, Fuzzy inner product spaceA new approach, Journal of Fuzzy Math, 14(2)(2006), $273-282$

C. Felbin, Finite dimensional Fuzzy normed linear space, Fuzzy Sets and Systems, 48(1992), 239-248.

J.K. Kohil and R. Kumar, Linear mappings, Fuzzy linear spaces, Fuzzy inner product spaces and Fuzzy Co- inner product spaces, Bull Calcutta Math. Soc., 87(1995), 237246.

J.K. Kohil and R. Kumar, On fuzzy inner product spaces and fuzzy co- inner product spaces, Bull Calcutta Math.Soc., 53(1993), 227-232.

M. Goudarzi and S.M. Vaezpour, On the definition of fuzzy Hilbert spaces and its applications, J. Nonlinear Sci. Appl., 2(1)(2009), 46-59.

P.Majumdar and S.K.Samanta, On Fuzzy inner product spaces, J.Fuzzy Math., 16(2)(2008), 377-392.

R. Biswas, Fuzzy inner product spaces and Fuzzy norm functions, Information Sciences 53(1991), 185-190.

R.Saadati and S.M.Vaezpoor, Some results on fuzzy Banach spaces, J. Appl. Math. and Computing, 17(1)(2005), $475-488$.

S.C.Cheng, J.N.Mordeson, Fuzzy linear operators and Fuzzy normed linear spaces, Bull. Cal. Math. Soc., $86(1994), 429-436$.

T.Bag, S.K.Samanta, Operators Fuzzy Norm and some properties Fuzzy,Inf. Eng., 7(2015), 151-164.

Yongfusu. Riesz Theorem in probabilistic inner product spaces, Inter. Math. Forum, 2(62)(2007), 3073-3078.

T.Bag, S.K. Samanta, Finite Dimensional fuzzy normed linear spaces, J.Fuzzy Math, 11(3)(2003), 687-705.

G.F.Simmons, Introduction to Topology and Modern Analysis, New Delhi, Tata McGraw-Hill, 1963.

Balmohan V Limaye, Functional Analysis, New Delhi: New Age International, 1996.

Noori F.AI- Mayahi, Abbas M. Abbas, Some properties of spectral theory in fuzzy Hilbert spaces, Journal of AL-Qadisiyah for Computer Science and Mathematics, $8(2)(2016), 1-7$.

V.Istratescu, On Some Hyponormal Operators, Pacific Journal of Mathematics, 22(3)(1967), 413-417.

A. Radharamani, Fuzzy unitary operator in fuzzy Hilbert space and its properties, International Journal of Research and Analytical Reviews (IJRAR), 15(4)(2018), 258261.

Metrics

PDF views
33
Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20266.0
|

Published

01-10-2019

How to Cite

A. Radharamani, and A. Brindha. “On Some Fuzzy Hyponormal Operators”. Malaya Journal of Matematik, vol. 7, no. 04, Oct. 2019, pp. 607-11, doi:10.26637/MJM0704/0001.