On topological properties of probabilistic neural network
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0002Abstract
A graphical invariant is a real number related to a graph which is fixed under the graph isomorphism. In chemical graph theory, these invariants are also called topological indices and these are play a vital role to predict various chemical and physical properties of different molecular structures. In this work, we generalized multiplicative version Zagreb indices and compute it for probabilistic neural network. Also, we compute the general Zagreb index or $(a, b)$-Zagreb index for the same network and compute some other degree based topological indices for some particular values of $a$ and $b$.
Keywords:
Probabilistic neural network, Vertex degree based topological indices, The general Zagreb index, Multiplicative version of general Zagreb indexMathematics Subject Classification:
Mathematics- Pages: 612-617
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
I. Gutman and N. Trinajestić, Graph theory and molecular orbitals total $pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17,(1972), 535-538.
P. Sarkar, N. De and A. Pal, The Zagreb indices of graphs based on new operations related to the join of graphs, $J$. Int. Math. Virtual Inst., 7,(2017), 181-209.
M.K. Siddiqui, M. Imran and A. Ahmad, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput., 280, (2016), 132-139.
D. Sarala, S.K. Ayyaswamy and S. Balachandran, The Zagreb indices of graphs based on four new operations related to the lexicographic product, Appl. Math. Comput., $309,(2017), 156-169$.
H. Deng, D. Sarala, S.K. Ayyaswamy and S. Balachandran, The Zagreb indices of four operations on graphs, Appl. Math. and Comput., 275,(2016), 422-431.
I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst., 1, (2011), 13-19.
B. Basavanagoud and S. Patil, Multiple Zagreb indices and coindices of some derived graphs, Opuscula Math., 36, (3), (2016), 287-299.
A. Ghalavand, A.R. Ashrafi and I. Gutman, Extremal graphs for the second multiplicative Zagreb index, Bull. Int. Math. Virt. Inst., 8, (2018), 369-383.
R. Muruganandam, R.S. Manikandan and M. Aruvi, The multiplicative Zagreb indices of products of graphs, Int. J. Math. Res., 8, (1), (2016), 61-69.
M. Ghorbani and N. Azimi, Note on multiplicative Zagreb indices, Iran. J. Math. Chem., 3, (2), (2012), 137 143.
M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68, (2012), 217-230.
V. Božović, Z. K. Vukićević and G. Popivoda, Extremal values of total multiplicative sum Zagreb index and first multiplicative sum Zagreb coindex on unicycle and bycyclic graphs, MATCH Commun. Math. Comput. Chem., $78,(2017), 417-430$.
M. Azari and A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb index of graph operations, $J$. Math. Inequalities, 9, (3), (2015), 727-738.
M. Eliasi and A. G. Ghalavand, On trees and the multiplicative sum Zagreb index, Commun. Comb. Opt., 1, (2), $(2016), 137-148$.
M. Azari, Multiplicative sum Zagreb index of splice, bridge, and bridge-cycle graphs, Bol. Soc. Paran. Mat., (2018), DOI: $10.5269 / mathrm{bspm} .40503$.
B. Furtul and I. Gutman, A forgotten topological index. $J$. Math. Chem., 53, (2015), 1184-1190.
I. Gutman and M. Lepović, Choosing the exponent in the definition of the connectivity index. J. Serb. Chem. Soc., $66,(9),(2001), 605-611$.
$mathrm{X}$. Li and J. Zheng, A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem., 54, (2005), 195-208.
P.S. Ranjini, V. Lokesha and A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory, 1, (2013), 116-121.
B. Zhao, J. Gan and H. Wu, Redefined Zagreb indices of some nano structures. Appl. Math. Nonlinear Sci., 1, (1), (2016), 291-300.
Y.C. Kwun, A.R. Virk, W. Nazeer, W. Gao and S.M. Kang, Zagreb polynomials and redefined Zagreb indices of silicon-carbon $S i_2 C_3-I[p, q]$ and $S i_2 C_3-I I[p, q]$, (2018), DOI:10.20944/preprints 201806.0038v1.
R.P. Kumar, D.S. Nandappa and M.R.R. Kanna, Redefined zagreb, Randić, Harmonic, GA indices of graphene. Int. J. Math. Anal., 11, (10), (2017), 493-502.
M. Azari and A. Iranmanesh, Generalized Zagreb index of graphs. Studia Univ. Babes-Bolyai., 56, (3), (2011), 59-70.
P. Sarkar, N. De and A. Pal, The generalized Zagreb index of some carbon structures. Acta Chem. Iasi, 26, (1), (2018), 91-104.
P. Sarkar, N. De, I.N. Congul and A. Pal, Generalized Zagreb index of some dendrimer structures. Uni. J. Math. Appl., 1, (3), (2018), 160-165.
P. Sarkar, N. De, I.N. Congul and A. Pal, Generalized Zagreb index of some derived networks. J. Taibah Uni. Sci., (2018), DOI:10.1080/16583655.2018.1535881.
M. Javaid and J. Cao, Computing topological indices of probabilistic neural network, Neural Comput, Aplic., (2017), DOI: 10.1007/s00521-017-2972-1.
J.B. Liu, J. Zhao, S. Wang, M. Javaid and J. Cao, On the topological properties of the certain neural networks, $J$. Artificial Intell. Soft Comput. Res., 8, (4), (2018), 257268.
Similar Articles
- S. Baskaran, A.M. Shahul Hameed, On total dominator coloring of middle graph, total graph and shadow graph , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.