Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0003Abstract
In this paper, we introduce three new subclasses of the function class $\Sigma^{\prime}$ of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials. Furthermore, we obtain estimates on the first two coefficients of functions in these new subclasses. Also, Fekete-Szegö inequalities of functions belonging to these subclasses are founded.
Keywords:
Analytic functions, Univalent and bi-univalent functions, Fekete-Szego problem, Horadam polynomials, Poisson, distribution, Coefficient bounds, SubordinationMathematics Subject Classification:
Mathematics- Pages: 618-624
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
A. G. Alamoush and M. Darus, Coefficient bounds for new subclasses of bi-univalent functions using Hadamard product, Acta. Univ. Apul., 3(2014), 153-161.
A. G. Alamoush and M. Darus, Coefficients estimates for bi-univalent of Fox-wright functions, Far: East Jour. Math. Sci., 89(2014), 249-262.
A. G. Alamoush and M. Darus, On coefficient estimates for new generalized subclasses of bi-univalent functions, AIP Conf. Proc., (2014), 1614: 844.
D.A. Brannan and T. S. Taha, On some classes of biunvalent functions, in Mathematical Analysis and Its Applications (Kuwait; February 18-21, 1985) (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors), pp. 53-60, KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988; see also Studia Univ. Babes-Bolyai. Math., 31(1986), 70-77.
D.A. Brannan and T. S. Taha, On some classes of biunivalent functions, Stud. Univ. Babeş-Bolyai. Math., 31(1986), 70-77.
A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quart., 35(1997), 137-148.
A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quart., 23(1985), 7-20.
T. Horcum and E. G. Kocer, On some properties of Horadam polynomials, Int. Math. Forum, 4(2009), 1243. 1252.
T. Koshy, Fibonacci and Lucas numbers with applications, A Wiley- Interscience Publication, (2001).
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
A. Lupas, A Guide of Fibonacci and Lucas polynomials, Math. Magazine, 7(1999), 2-12.
S. Porwal, An application of a Poisson distribution series on certain analytic functions, Jour. Comp. Anal., Art. ID 984135 (2014), 1-3.
S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Math., 27(2016), 1021-1027.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
Similar Articles
- M. Farisa, K.S. Parvathy, Geodesic convexity in labeled graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.