Relatively prime dominating polynomial in graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0704/0006

Abstract

We introduce the concept of relatively prime domination polynomial of a graph $G$. The relatively prime domination polynomial of a graph $G$ of order $n$ is the polynomial $D_{r p d}(G, x)=\sum_{k=\gamma_{p d}(G)}^n d_{r p d}(G, k) x^k$ where $d_{r p d}(G, k)$ is the number of relatively prime dominating sets of $G$ of size $k$, and $\gamma_{r p d}(G)$ is the relatively prime domination number of $G$. We compute this polynomial for path $P_n$, complete bipartite graph $K_{m, n}$, star $K_{1, n}$, bistar $B_{m, n}$, spider graph $K_{1, n, n}$ and Helm graph $H_n$.

Keywords:

Dominating polynomial, relatively prime dominating polynomial roots, relatively prime dominating polynomial

Mathematics Subject Classification:

Mathematics
  • C. Jayasekaran Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Tamil Nadu, India
  • A. Jancy Vini Department of Mathematics, Holy Cross College (Autonomous), Nagercoil-629004, Tamil Nadu, India
  • Pages: 643-650
  • Date Published: 01-10-2019
  • Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)

S. Alikhani and Y.H. Peng, Introduction to domination polynomial of a graph, arXiv: 0905.2251v1 [math.CO] 14 May, 2009.

C. Berge, Theory of Graphs and its Applications, London, 1962.

G. Chartrand, H. Hevia, E. B. Jarette, M. Schultz, Sub graph distance defined by edge transfers, Discrete Math., $170(1997), 63-69$.

G. Fana, 1. Sunb, The Erdos Sos Conjecture for spiders, Discrete Math., 307(2007), 3055-3062.

F. Harary, Graph Theory, Addison-Wesley, Reading, Massachuselts, 1972 .

T. W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.

C. Jayasekaran, Self vertex switching of disconnected unicyclic graphs, Ars Combinatoria, 129(2016), 51-63.

C. Jayasekaran and A. Jancy Vini, Relatively prime dominating sets in graphs, Annals of Pure and Applied Math ematics, 14(3)(2017), 359-369.

C. Jayasekaran and A. Jancy Vini, Relatively prime dominating sets of vertex switching graphs, Communicated.

C. Jayasekaran and A. Jancy Vini, Relatively prime dominating sets of some graphs, Communicated.

V. R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, 2010.

J. H. Lint and J. J. Seidel. Equilateral points in elliptic geometry, In Proc. Kon. Nede. Acad. Wetensch., Ser. A, $69(1966), 335-348$

O. Ore. Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38(Amer. Math. Soc., Providence, RI), 1962.

S. K. Vaidya and N. H. Shah, Cordial labeling for some bistar related graphs, International Journal of Mathemat ics and Soft Computing, 4(2)(2014), 33-39.

Metrics

Metrics Loading ...

Published

01-10-2019

How to Cite

C. Jayasekaran, and A. Jancy Vini. “Relatively Prime Dominating Polynomial in Graphs”. Malaya Journal of Matematik, vol. 7, no. 04, Oct. 2019, pp. 643-50, doi:10.26637/MJM0704/0006.