Relatively prime dominating polynomial in graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0006Abstract
We introduce the concept of relatively prime domination polynomial of a graph $G$. The relatively prime domination polynomial of a graph $G$ of order $n$ is the polynomial $D_{r p d}(G, x)=\sum_{k=\gamma_{p d}(G)}^n d_{r p d}(G, k) x^k$ where $d_{r p d}(G, k)$ is the number of relatively prime dominating sets of $G$ of size $k$, and $\gamma_{r p d}(G)$ is the relatively prime domination number of $G$. We compute this polynomial for path $P_n$, complete bipartite graph $K_{m, n}$, star $K_{1, n}$, bistar $B_{m, n}$, spider graph $K_{1, n, n}$ and Helm graph $H_n$.
Keywords:
Dominating polynomial, relatively prime dominating polynomial roots, relatively prime dominating polynomialMathematics Subject Classification:
Mathematics- Pages: 643-650
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
S. Alikhani and Y.H. Peng, Introduction to domination polynomial of a graph, arXiv: 0905.2251v1 [math.CO] 14 May, 2009.
C. Berge, Theory of Graphs and its Applications, London, 1962.
G. Chartrand, H. Hevia, E. B. Jarette, M. Schultz, Sub graph distance defined by edge transfers, Discrete Math., $170(1997), 63-69$.
G. Fana, 1. Sunb, The Erdos Sos Conjecture for spiders, Discrete Math., 307(2007), 3055-3062.
F. Harary, Graph Theory, Addison-Wesley, Reading, Massachuselts, 1972 .
T. W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
C. Jayasekaran, Self vertex switching of disconnected unicyclic graphs, Ars Combinatoria, 129(2016), 51-63.
C. Jayasekaran and A. Jancy Vini, Relatively prime dominating sets in graphs, Annals of Pure and Applied Math ematics, 14(3)(2017), 359-369.
C. Jayasekaran and A. Jancy Vini, Relatively prime dominating sets of vertex switching graphs, Communicated.
C. Jayasekaran and A. Jancy Vini, Relatively prime dominating sets of some graphs, Communicated.
V. R. Kulli, Theory of Domination in Graphs, Vishwa International Publications, 2010.
J. H. Lint and J. J. Seidel. Equilateral points in elliptic geometry, In Proc. Kon. Nede. Acad. Wetensch., Ser. A, $69(1966), 335-348$
O. Ore. Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38(Amer. Math. Soc., Providence, RI), 1962.
S. K. Vaidya and N. H. Shah, Cordial labeling for some bistar related graphs, International Journal of Mathemat ics and Soft Computing, 4(2)(2014), 33-39.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.