Application of quasi-subordination for certain subclasses of bi-univalent functions of complex order

Downloads

DOI:

https://doi.org/10.26637/MJM0704/0011

Abstract

In this present paper, the author construct a new class $S_{\lambda, \delta}^{k, \alpha}(\gamma, t, \Psi)$ of bi-univalent functions of complex order defined in the open unit disc. The second and the third coefficients of the Taylor-Maclaurin series for functions in the new subclass are determined. Several special consequences of the results are also pointed out.

Keywords:

Bi-univalent functions, coefficient bounds, subordination, quasi-subordination

Mathematics Subject Classification:

Mathematics
  • Pages: 681-686
  • Date Published: 01-10-2019
  • Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)

F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. $27(2004), 1429-1436$.

A. Akgül and S. Bulut, On a certain subclass of meromorphic functions defined by Hilbert Space operator, Acta Universitatis Apulensis 45(2016), 1-9.

A. Akgül, A new subclass of meromorphic functions defined by Hilbert Space operator, Honam Mathematical J. 38(2016), 495-506.

Ş. Altınkaya and S. Yalçin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C.R. Acad. Sci. Paris, Ser. I353(2015), 1075-1080.

D. A. Brannan and J. G. Clunie, Aspects of contemporary complex analysis. New York: Proceedings of the NATO Advanced Study Institute Held at University of Durham, 1979.

D. A. Brannan and T. S. Taha, On some classes of biunivalent functions, Studia Universitatis Babeş-Bolyai Mathematica 31(1986), 70-77.

R. Bucur, L. Andrei and D. Breaz, Coefficient bounds and Fekete-Szegö problem for a class of analytic functions defined by using a new differential operator, Applied Mathematical Sciences 9(2015), 1355-1368.

M. Darus and R. W. İbrahim, New classes containing generalization of differential operator, Appl. Math. Sci. $3(2009), 2507-2515$.

P. L. Duren, Univalent Functions, Grundlehren der MathematischenWissenschaften, Bd. 259, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1983.

S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser. $I 354(2016), 365-370$.

T. Hayami and S. Owa, Coefficient bounds for biunivalent functions, Pan Amer. Math. 22(2012), 15-26.

S. Kanas and H. M. Srivastava, Linear operators associated with $k$-uniformly convex functions, Integral Transform. Spec. Funct. 9(2000), 121-132.

M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18(1967), 63-68.

T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34(1967), 95-102.

T. Panigarhi and G. Murugusundaramoorthy, Coefficient bounds for Bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc. $16(2013), 91-100$.

E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis 32(1969), 100-112.

C. Pommerenke, Univalent functions, Vandenhoeck and Rupercht, Göttingen, 1975.

F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subordinate functions, Bull. Aust. Math. Soc. 43(1991), 317-324.

M. S. Robertson, Quasi-subordination and coefficients conjectures, Bull. Amer. Math. Soc. 76(1970), 1-9.

S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975), 109-115.

F. Müge Sakar, H. Özlem Güney, Faber polynomial coefficient bounds for analytic bi-close-to-convex functions defined by fractional calculus, Journal of Fractional Calculus and Applications 9(2018), 64-71.

${ }^{[22]}$ G. S. Salagean, Subclasses of univalent Functions. Complex Analysis- fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Applied Mathematics Letters 1(2013), 67-73.

B. Şeker and V. Mehmetoğlu, Coefficient bounds for new subclasses of bi-univalent functions, New Trends in Mathematical Sciences 4(2016), 197-203.

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters 23(2010), 1188-1192.

A. Zireh, E. A. Adegani, S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin 23(2016), 487-504.

Metrics

Metrics Loading ...

Published

01-10-2019

How to Cite

Şahsene Altınkaya. “Application of Quasi-Subordination for Certain Subclasses of Bi-Univalent Functions of Complex Order”. Malaya Journal of Matematik, vol. 7, no. 04, Oct. 2019, pp. 681-6, doi:10.26637/MJM0704/0011.