Application of quasi-subordination for certain subclasses of bi-univalent functions of complex order
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0011Abstract
In this present paper, the author construct a new class $S_{\lambda, \delta}^{k, \alpha}(\gamma, t, \Psi)$ of bi-univalent functions of complex order defined in the open unit disc. The second and the third coefficients of the Taylor-Maclaurin series for functions in the new subclass are determined. Several special consequences of the results are also pointed out.
Keywords:
Bi-univalent functions, coefficient bounds, subordination, quasi-subordinationMathematics Subject Classification:
Mathematics- Pages: 681-686
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. $27(2004), 1429-1436$.
A. Akgül and S. Bulut, On a certain subclass of meromorphic functions defined by Hilbert Space operator, Acta Universitatis Apulensis 45(2016), 1-9.
A. Akgül, A new subclass of meromorphic functions defined by Hilbert Space operator, Honam Mathematical J. 38(2016), 495-506.
Ş. Altınkaya and S. Yalçin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C.R. Acad. Sci. Paris, Ser. I353(2015), 1075-1080.
D. A. Brannan and J. G. Clunie, Aspects of contemporary complex analysis. New York: Proceedings of the NATO Advanced Study Institute Held at University of Durham, 1979.
D. A. Brannan and T. S. Taha, On some classes of biunivalent functions, Studia Universitatis Babeş-Bolyai Mathematica 31(1986), 70-77.
R. Bucur, L. Andrei and D. Breaz, Coefficient bounds and Fekete-Szegö problem for a class of analytic functions defined by using a new differential operator, Applied Mathematical Sciences 9(2015), 1355-1368.
M. Darus and R. W. İbrahim, New classes containing generalization of differential operator, Appl. Math. Sci. $3(2009), 2507-2515$.
P. L. Duren, Univalent Functions, Grundlehren der MathematischenWissenschaften, Bd. 259, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1983.
S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser. $I 354(2016), 365-370$.
T. Hayami and S. Owa, Coefficient bounds for biunivalent functions, Pan Amer. Math. 22(2012), 15-26.
S. Kanas and H. M. Srivastava, Linear operators associated with $k$-uniformly convex functions, Integral Transform. Spec. Funct. 9(2000), 121-132.
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18(1967), 63-68.
T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34(1967), 95-102.
T. Panigarhi and G. Murugusundaramoorthy, Coefficient bounds for Bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc. $16(2013), 91-100$.
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis 32(1969), 100-112.
C. Pommerenke, Univalent functions, Vandenhoeck and Rupercht, Göttingen, 1975.
F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subordinate functions, Bull. Aust. Math. Soc. 43(1991), 317-324.
M. S. Robertson, Quasi-subordination and coefficients conjectures, Bull. Amer. Math. Soc. 76(1970), 1-9.
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975), 109-115.
F. Müge Sakar, H. Özlem Güney, Faber polynomial coefficient bounds for analytic bi-close-to-convex functions defined by fractional calculus, Journal of Fractional Calculus and Applications 9(2018), 64-71.
${ }^{[22]}$ G. S. Salagean, Subclasses of univalent Functions. Complex Analysis- fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Applied Mathematics Letters 1(2013), 67-73.
B. Şeker and V. Mehmetoğlu, Coefficient bounds for new subclasses of bi-univalent functions, New Trends in Mathematical Sciences 4(2016), 197-203.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters 23(2010), 1188-1192.
A. Zireh, E. A. Adegani, S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin 23(2016), 487-504.
Similar Articles
- R. Helen, G. Uma, A novel method to obtain initial basic solution and optimal solution of pentagonal fuzzy transportation problem , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.