Fixed-point of $(\alpha, \beta, Z)$-contraction mapping under simulation functions in Banach space
Downloads
Abstract
Some fixed point results are discussed for the setting of a Banach space through the definition of a new contraction condition via a Cyclic $(\alpha, \beta, Z)$-admissible mapping which is embedded in simulation function.
Keywords:
Fixed point, Cyclic $(\alpha, \beta, Z) $-admissible mapping, Banach Space, Simulation FunctionsMathematics Subject Classification:
Mathematics- Pages: 745-750
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
S. Alizadeh, F. Moradlou, P. Salimi, "Some fixed point results for contractive mappings", Filomat, 28(2014), 635647.
H.H. Alsulami, E. Karapinar, F. Khojasteh, A.F. RoldanLopez-de-Hierro. "A proposal to the study of contractions in quasi-metricspaces", Discrete Dynamics in Nature and Society. Article ID 269286, 10 pages (2014).
H. Argoubi, B. Samet, C. Vetro, "Nonlinear contractions involving simulation functions in a metric space with a partial order", J. Nonlinear Sci. Appl. 8(2015), 1082 1094.
Eskandar Ameer, Muhammad Arshad and WasfiShatanawi, "Common fixed point result for generalized contractionmultivalued mappings in metric spaces", $J$. Fixed Point Theory Appl. DOI 10.1007/s11784-017-0477$2(2007)$.
E. Karapinar, "Fixed point results via simulation functions", Filomat, 30(8)(2016), 2343-2350.
F. Khojasteh, S. Shukla, S. Radenovic, "A new approach to the study of fixed point theorems via simulation functions", Filomat, 29(2015), 1189-1194.
A.F. Roldan-Lopez-de-Hierro, E. Karapinar, C. RoldanLopez-de-Hierro, J. Martincz-Moreno, "Coincidence point theorems on metricspaces via simulation functions", J. Comput. Appl. Math. 275(2015), 345-355.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.