Fixed-point of $(\alpha, \beta, Z)$-contraction mapping under simulation functions in Banach space

Downloads

Abstract

Some fixed point results are discussed for the setting of a Banach space through the definition of a new contraction condition via a Cyclic $(\alpha, \beta, Z)$-admissible mapping which is embedded in simulation function.

Keywords:

Fixed point, Cyclic $(\alpha, \beta, Z) $-admissible mapping, Banach Space, Simulation Functions

Mathematics Subject Classification:

Mathematics
  • T. Mani Department of Mathematics, Trichy Engineering College, Konalai-621132, Affiliated to Anna University, Tamil Nadu, India.
  • R. Krishnakumar PG & Research Department of Mathematics, UrumuDhanalakshmi College, Affiliated to Bharathidasan University, Trichy-620019, Tamil Nadu, India.
  • D. Dhamodharan PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Trichy-620020, Tamil Nadu, India.
  • Pages: 745-750
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

S. Alizadeh, F. Moradlou, P. Salimi, "Some fixed point results for contractive mappings", Filomat, 28(2014), 635647.

H.H. Alsulami, E. Karapinar, F. Khojasteh, A.F. RoldanLopez-de-Hierro. "A proposal to the study of contractions in quasi-metricspaces", Discrete Dynamics in Nature and Society. Article ID 269286, 10 pages (2014).

H. Argoubi, B. Samet, C. Vetro, "Nonlinear contractions involving simulation functions in a metric space with a partial order", J. Nonlinear Sci. Appl. 8(2015), 1082 1094.

Eskandar Ameer, Muhammad Arshad and WasfiShatanawi, "Common fixed point result for generalized contractionmultivalued mappings in metric spaces", $J$. Fixed Point Theory Appl. DOI 10.1007/s11784-017-0477$2(2007)$.

E. Karapinar, "Fixed point results via simulation functions", Filomat, 30(8)(2016), 2343-2350.

F. Khojasteh, S. Shukla, S. Radenovic, "A new approach to the study of fixed point theorems via simulation functions", Filomat, 29(2015), 1189-1194.

A.F. Roldan-Lopez-de-Hierro, E. Karapinar, C. RoldanLopez-de-Hierro, J. Martincz-Moreno, "Coincidence point theorems on metricspaces via simulation functions", J. Comput. Appl. Math. 275(2015), 345-355.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

T. Mani, R. Krishnakumar, and D. Dhamodharan. “Fixed-Point of $(\alpha, \beta, Z)$-Contraction Mapping under Simulation Functions in Banach Space”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 745-50, https://www.malayajournal.org/index.php/mjm/article/view/1151.