\mathscr{Z} \text {-symmetries of }(\varepsilon) \text {-para-Sasakian 3-manifolds }

Downloads

Abstract

The object of this paper is study $(\varepsilon)$-para-Sasakian 3-manifolds satisfying certain conditions on the $\mathscr{Z}$ tensor. We characterize: $\mathscr{Z}$-symmetric, $\mathscr{Z}$-semisymmetric, $\mathscr{Z}$-pseudosymmetric, and projectively $\mathscr{Z}$-semisymmetric conditions on an ( $\varepsilon$-para-Sasakian 3-manifold.

Keywords:

\text { (ع)-para-Sasakian 3-manifold }, \mathscr{Z} \text { tensor }, \mathscr{Z} \text {-semisymmetric }, \mathscr{Z} \text {-pseudosymmetric }, Ricci-symmetric, Riccisemisymmetric, Einstein manifold

Mathematics Subject Classification:

Mathematics
  • Pages: 770-774
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

T. Takahashi, Sasakain manifold with pseudoRiemannian metric, Tohoku Math. J., Second Series, 21(1969), 271-290.

A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci., $16(3)(1993), 545-556$.

K. L. Duggal, Space time manifolds and contact structures, Int. J. Math. Math. Sci., 13(3)(1990), 545-554.

K. L. Duggal and B. Sahin, Lightlike submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci., 2007, Art. ID 57585,21 pages.

R. Kumar, R. Rani and R. K. Nagaich, On sectional curvature of $varepsilon$-Sasakian manifolds, Int. J. Math. Math. Sci., 2007, Art. ID: 93562,10 pages.

X. Xufeng and C. Xiaoli, Two theorems on $varepsilon$-Sasakian manifolds, Int. J. Math. Math. Sci., 21(2)(1998), 249254

U. C. De and A. Sarkar, On $varepsilon$-Kenmotsu manifolds, Hardonic J., 32(2)(2009), 231-242.

M. M. Tripathi, E. Kihc, S. Y. Perktas, S. Keles, Indefinite almost para-contact metric manifolds, Int. J. Math. Math. Sci., 2010 Art. ID 846195,19 pages.

S. Y. Perktas, E. Kilic, M. M. Tripathi and S. Keles, On (E)-para-Sasakian 3-manifolds, arXiv:0911.4786v2 [math.DG] 1 Dec 2009.

C. A. Mantica and L. G. Molonari, Weakly $mathscr{Z}$ symmetric manifolds, Acta Math. Hunger., 135(2012), 80-96.

C. A. Mantica and Y. J. Suh, Pseudo $Z$ symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys., 9/1, 1250004(2012).

C. A. Mantica and Y. J. Suh, Pseudo Z symmetric spacetimes, J. Math. Phys., 55, 042502(2014).

S. Mallick and U. C. De, $mathscr{Z}$ tensor on N(k)-quasi-Einstein manifolds, Kyungpook Math. J., 56(2016), 979-991.

I. Sato, On a structure similar to the almost contact structure, Tensor, N.S., 30(3)(1976), 219-224.

I. Sato, On a structure similar to the almost contact structures II, Tensor, N. S., 31(2)(1977), 199-205.

$mathrm{S}$. Sasaki, On para-contact Riemannian manifolds, $T R U$ Math., 16(2)(1980), 75-86.

K. Matsumoto, On Lorentzian Para-contact manifolds, Bull. Yamagata Univ., 12(2)(1989), 151-156.

Z. I. Szabo, Strucure theorems on Riemannian spaces satisfying $R(X, Y), R=0$. The local version, J. Differ. Geo., 17(1982), 531-582.

R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg., Ser. A 44(1)(1992), 1-34.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

N. B. Gatti, M. Nagaraja, Raghawendra Mishra, and D. G. Prakasha4. “\mathscr{Z} \text {-Symmetries of }(\varepsilon) \text {-Para-Sasakian 3-Manifolds }”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 770-4, https://www.malayajournal.org/index.php/mjm/article/view/1156.