Some degree based connectivity indices of the polygonal cylinders of a graph

Downloads

Abstract

The polygonal cylinder $C_{m, n}$ is a graph obtained from Cartesian product of paths $P_m$ and $P_n$ and using topological identification of vertices and edges of two opposite sides $P_m \times P_n$. We have redefined the polygonal cylinder $C_{m, n}$ by using Cartesian product of $C_{m-1} \times P_n$. In this paper, we have introduced a closed polygonal cylinder $C_{[m, n]}$, is a graph obtained from Cartesian product of cycle $C_m$ and $P_n$. Further more we have obtained first and second Zagreb, F-index, first and second hyper-Zagreb, harmonic, Randić, sum-connectivity and atom-bond connectivity indices of polygonal cylinder and closed polygonal cylinder of a graph.

Keywords:

Polygonal cylinder, Zagreb index, hyper-Zagreb index, Randi´ c index, sum-connectivity index and ABC index

Mathematics Subject Classification:

Mathematics
  • B. Basavanagoud Department of Mathematics, Karnatak University, Dharwad-580003, Karnataka, India.
  • Mahammadsadiq Sayyed Department of Mathematics, Karnatak University, Dharwad-580003, Karnataka, India.
  • Pages: 775-781
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectiveity index: Modelling the enthalphy of formation of alkanes, Indian J. Chem., 37A(1998), $849-855$.

M. R. Farahani, M. R. Rajesh Kanna and R. Pradeep Kumar, On the hyper-Zagreb indices of some nanostructures, Asian Academic Research J. Multidisciplinary, $3(1)(2016), 115-123$.

S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer, $60(1987), 187-197$.

B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53(4)(2015), 1184-1190.

I. Gutman and N. Trinajstić , Graph theory and molecular orbitals. Total $pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(4)(1972), 535-538.

I. Gutman, Degree-based topological indices, Croat. Chem. Acta., 86(2013), 351-361.

I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Math. Comput. Chem., 50(2004), 83-92.

I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin. 1986.

F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969.

W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, John Wiley and Sons, New York, USA., 2000.

M. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157(4)(2009), 804-811.

V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, 2012.

S. Nikolić, A. Kovaćević, Milićević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta. $76(2)(2003), 113-124$

A. R. Nizami, A. Naseem and H. M. Waqar Ahmed, The polygonal cylinder and its Hosoya polynomial, Online $J$. Anal. Combin., 15 (9) (2020).

M. Randic $c$, On characterization of molecular branching, J. Am. Chem. Soc., 97(1975), 6609-6615.

G. H. Shirdel, H. Rezapour and A. M. Sayadi, The hyperZagreb index of graph operations, Iranian J. Math. Chem. $4(2)(2013), 213-220$.

$mathrm{R}$. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. $64(2010), 359-372$.

R. Todeschini, D. Ballabio and V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, Novel molecular structure descriptors-Theory and applications I (I. Gutman, B. Furtula, eds.) Univ. Kragujevac., $(2010), 73-100$.

N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.

B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46(4)(2009), 1252-1270.

B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47(1)(2010), 210-218.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

B. Basavanagoud, and Mahammadsadiq Sayyed. “Some Degree Based Connectivity Indices of the Polygonal Cylinders of a Graph”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 775-81, https://www.malayajournal.org/index.php/mjm/article/view/1157.