Some degree based connectivity indices of the polygonal cylinders of a graph
Downloads
Abstract
The polygonal cylinder $C_{m, n}$ is a graph obtained from Cartesian product of paths $P_m$ and $P_n$ and using topological identification of vertices and edges of two opposite sides $P_m \times P_n$. We have redefined the polygonal cylinder $C_{m, n}$ by using Cartesian product of $C_{m-1} \times P_n$. In this paper, we have introduced a closed polygonal cylinder $C_{[m, n]}$, is a graph obtained from Cartesian product of cycle $C_m$ and $P_n$. Further more we have obtained first and second Zagreb, F-index, first and second hyper-Zagreb, harmonic, Randić, sum-connectivity and atom-bond connectivity indices of polygonal cylinder and closed polygonal cylinder of a graph.
Keywords:
Polygonal cylinder, Zagreb index, hyper-Zagreb index, Randi´ c index, sum-connectivity index and ABC indexMathematics Subject Classification:
Mathematics- Pages: 775-781
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectiveity index: Modelling the enthalphy of formation of alkanes, Indian J. Chem., 37A(1998), $849-855$.
M. R. Farahani, M. R. Rajesh Kanna and R. Pradeep Kumar, On the hyper-Zagreb indices of some nanostructures, Asian Academic Research J. Multidisciplinary, $3(1)(2016), 115-123$.
S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer, $60(1987), 187-197$.
B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53(4)(2015), 1184-1190.
I. Gutman and N. Trinajstić , Graph theory and molecular orbitals. Total $pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(4)(1972), 535-538.
I. Gutman, Degree-based topological indices, Croat. Chem. Acta., 86(2013), 351-361.
I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Math. Comput. Chem., 50(2004), 83-92.
I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin. 1986.
F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1969.
W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, John Wiley and Sons, New York, USA., 2000.
M. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157(4)(2009), 804-811.
V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, 2012.
S. Nikolić, A. Kovaćević, Milićević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta. $76(2)(2003), 113-124$
A. R. Nizami, A. Naseem and H. M. Waqar Ahmed, The polygonal cylinder and its Hosoya polynomial, Online $J$. Anal. Combin., 15 (9) (2020).
M. Randic $c$, On characterization of molecular branching, J. Am. Chem. Soc., 97(1975), 6609-6615.
G. H. Shirdel, H. Rezapour and A. M. Sayadi, The hyperZagreb index of graph operations, Iranian J. Math. Chem. $4(2)(2013), 213-220$.
$mathrm{R}$. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. $64(2010), 359-372$.
R. Todeschini, D. Ballabio and V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, Novel molecular structure descriptors-Theory and applications I (I. Gutman, B. Furtula, eds.) Univ. Kragujevac., $(2010), 73-100$.
N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46(4)(2009), 1252-1270.
B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47(1)(2010), 210-218.
Similar Articles
- K. Krishna Kumari, S. Kavitha, D. Nidha, On the upper open detour monophonic number of a graph , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.