Nonstandard Compactification of uniform spaces

Downloads

Abstract

Let $(X, \Psi)$ be a uniform space. We define an equivalence relation on a superstructure ${ }^* X$ of $X$. The set of equivalence classes is denoted by $\bar{X}$. We extend the uniform structure $\Psi$ of $X$ to a suitable uniform structure $\widehat{\Psi}$ on $\bar{X}$. We embed $X$ as a dense subspace of $\bar{X}$ and show that $\bar{X}$ is compact. Thus $\bar{X}$ turns out to be a uniform compactification of $X$.

Keywords:

Standard, Nonstandard,, Uniform Structure, Uniform spaces, Compactness, Compactification, Weak topology

Mathematics Subject Classification:

Mathematics
  • S. Alagu Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627012, Tamil Nadu, India.
  • Pages: 882-885
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

Abraham Robinson, Nonstandard Analysis, North Holland Publishing Company, 1966.

A E Hurd and P A Loeb, An Introduction to Nonstandard Real Analysis, Academic Press, 1985.

James Dugundji, Topology, Prince Hall of India Private Limited, New Delhi, 1975.

James R Munkres, Topology A First Course, Prentice Hall, Inc., 2000.

Luxemburg, W.A.J, A General theory of monads, Applications of Model theory to Algebra, Analysis and Probability (W.A.J. Luxemburg ed.), Holt, Rinehart and Winston, New York, 1969.

S. Alagu and R. Kala, Nonstandard Analysis of Uniform Spaces, J. Math. Comput. Sci 11 (2021), No. 1, 10531062.

Stephen Willard, General Topology, Dover Publications, Inc. Mineola, New York, 1998.

Metrics

PDF views
22
Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20264.0
|

Published

01-01-2021

How to Cite

S. Alagu. “Nonstandard Compactification of Uniform Spaces”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 882-5, https://www.malayajournal.org/index.php/mjm/article/view/1182.