Relation between the SDD invariant and other graph invariants

Downloads

Abstract

The $S D D$ invariant is one of the 148 discrete Adriatic indices contributed many years ago. In this paper, we present the relations between the $S D D$ invariant and other graph invariants.

Keywords:

Degree, Zagreb invariant, symmetric division deg invariant

Mathematics Subject Classification:

Mathematics
  • P. Murugarajan Department of Mathematics, Government Arts College (Autonomous)(Affiliated to Bharathidasan University), Kumbakonam-612002, Tamil Nadu, India. https://orcid.org/0000-0002-7947-0325
  • R. Aruldoss Department of Mathematics, Government Arts College (Autonomous)(Affiliated to Bharathidasan University), Kumbakonam-612002, Tamil Nadu, India.
  • Pages: 905-909
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

A.T. Balaban, Highly discriminating distance based numerical descriptor, Chem. Phys. Lett., 89(1982), 399-404.

J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in $Q S A R$ and $Q S P R$, Gordon and Breach, Amsterdam, 1999.

B. Furtula, K. C. Das, I. Gutman, Comparative analysis of symmetric division deg invariant as potentially useful molecular descriptor, Int. J. Quantum Chem., $118(2018)$, e 25659.

I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535-538.

C. K. Gupta, V. Lokesha, B. Shwetha Shetty, P. S. Ranjini, Graph operations on the symmetric division deg invariant of graphs, Palestine J. Math., 5(2016), 1-8.

C. K. Gupta, V. Lokesha, B. Shwetha Shetty, P. S. Ranjini, On the symmetric division deg invariant of graph, Southeast Asian Bull. Math., 41(2016), 1-3.

José Luis Palacios, New upper bounds for the symmetric division deg invariant of graphs, Discrete Math. Lett., $2(2019), 52-56$.

M. Karelson, ]it Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, New York, 2000.

H. Kober, On the arithmetic and geometric means and on Holder's inequality, Proc. Amer. Math. Soc., 9(1958), $452-459$.

V. Lokesha, T. Deepika, Symmetric division deg invariant of tricyclic and tetracyclic graphs, Int. J. Sci. Eng. Res., $7(2016), 53-55$.

G. Mohanappriya, D. Vijayalakshmi, Symmetric division degree invariant and inverse sum invariant of transformation graph, IOP Conf. Ser. J. Phys., 1139(2018), 012048.

S. Nikolić, G. Kovacević, A. Milicević, N.Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, $76(2003), 113-124$

B.C. Rennie, On a class of inequalities, J. Aust. Math. Soc., 3(1963), 442-448.

J. Radon, Theorie und Anwendungen der Absolut Additiven Mengenfunktionen, Sitzungsber, Acad. Wissen. Wien, 122(1913), 1295-1438.

Milano Chemometrics & QSAR research group, molecular descriptors dataset, http://www.moleculardescriptors.eu/dataset/dataset.htm (accessed 18.04.14).

G. Pólya and G. Szego, Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions, Springer-Verlag, Berlin, 1972.

M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97(1975), 6609-6615.

R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

D. Vukicević., M. Gasperov, Bond aditive mdelling 1. Ariatic indices, Croat. Chem. Acta, 83(2010), 243-260.

A. Vasilev, Upper and lower bounds of symmetric division deg index, Iranian J. Math. Chem., 5(2)(2014), 91-98.

H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1947), 17-20.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

P. Murugarajan, and R. Aruldoss. “Relation Between the SDD Invariant and Other Graph Invariants”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 905-9, https://www.malayajournal.org/index.php/mjm/article/view/1188.