On commutative CI-algebras

Downloads

Abstract

$\mathrm{Cl}$-algebra is a generalization of $\mathrm{BE}$-algebra. The concept of Commutative $\mathrm{BE}$-algebra was first introduced by A. Walendziak. B. L. Meng applied the same definition in $\mathrm{Cl}$-algebras and established that any commutative $\mathrm{Cl}$-algebra is a $\mathrm{BE} /$ dual $\mathrm{BCK}$-algebra. In this paper we continue to study commutative $\mathrm{Cl}$-algebras and try to establish some properties in some specific $\mathrm{Cl}$-algebras.

Keywords:

CI-algebra, BE-algebra, Commutative.

Mathematics Subject Classification:

Mathematics
  • Kulajit Pathak Department of Mathematics, B.H. college, Howly, Assam, India
  • Pulak Sabhapandit Department of Mathematics, Biswanath college, Biswanath Chariali, Assam, India.
  • Pages: 914-916
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

[I] Hu Q. P., Li X., On BCH-algebras, Marh Seminer Notes, $11(2)(1983), 313-320$.

Imai Y., Iseki k., On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22.

Iseki k., An algebra related with a propositional calculus, Proc. Japan Acad. 42(1)(1966), 26-29.

Jun Y. B., Roh E. H.and Kim H. S., On BH-algebras, Sci. Marh. 1(1998), 347-354.

Kim, K. H. and Yon, Y. H., Dual BCK-algebra and MV-algebra, Sci. Marh. Japon. 66(2)(2007), 247-253.

Kim H. S. and Kim Y.H., On BE-algebras, Sci. Math. Japonicae $66(2007), 113-116$.

Meng B. L., Cl-algebras, Sci. Math. Japonicae online, $e-2009,695-701$.

[x] Negger J. and Kim H. S., On d-algebras, Math. Slovaca, $40(1999), 19-26$.

Pathak, K., Sabhapandit, P., and Chetia, B. C., Cartesian Product of BENCI-algebras, J. Assan Acad.Marh. 6(2013). $33-40$

Sabhapandit P. and Pathak K., Some special Type of CIalgebras, Int. J. of Trends and tech. 64, 6-11

[II] Walendziak, A., On commutative BE-algebras, Sci. Math. Japon. $69(2)(2009), 281-284$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

Kulajit Pathak, and Pulak Sabhapandit. “On Commutative CI-Algebras”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 914-6, https://www.malayajournal.org/index.php/mjm/article/view/1192.