A note on multiplicative(generalized)-derivations and Lie ideals in prime and semiprime rings
Downloads
Abstract
Let $R$ be a 2-torsion free semiprime ring and $U$ be a square closed Lie ideal of $R$. A mapping $F: R \longrightarrow R$ is called a multiplicative (generalized)- derivation if there exists a map $d: R \longrightarrow R$ such that $F(x y)=F(x) y+x d(y)$, for all $x, y \in R$. Suppose that $R$ admits a multiplicative(generalized)-derivation $F$ associated with a map $d$ such that $d(U) \subseteq U$. In the present paper, we shall prove that $d$ is commuting on $U$ if one of the following conditions holds: (i) $F([x, y])= \pm[d(x), y],(i i) F(x o y)= \pm(d(x) o y),(i i i) F([x, y])= \pm(d(x) o y),(i v) F(x o y)= \pm[d(x) o y],(v) F([x, y])=$ $\pm[F(x), y],($ vi) $F($ xoy $)= \pm[F(x)$ oy $],($ vii $) F([x, y])= \pm[F(x)$ oy $],($ viii $) F($ xoy $)= \pm[F(x), y]$ for all $x, y \in U$.
Keywords:
Semiprime ring, Prime ring, Lie ideal, Multiplicative(generalized)-derivationMathematics Subject Classification:
Mathematics- Pages: 961-965
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
[I] Ashraf. M., Ali A and Ali. S., Some commutativity theorems for rings with generalized derivations, South cast Asian Bull. Marh., 31 (2007), 415-421.
Ashraf. M and Rehman. N., On commutativity of rings with derivations, Resulss Math, 42 (2002), 3-8.
Ashraf. $M$ and Rehman. N., On derivations and commutativity in prime rings, East-west J. Math., 3(1) (2001), 87-91.
Daif, M. N., Bell, H. E., Remarks on derivations on semiprime rings, Int. J. Marh. Sch, 15(1) (1992), 205 206.
Bergen. J., Herstein I. N., Kerr. W. J., Lie Ideals and derivations of prime rings, $J$. Algebra., 17 (1981), 259. 267.
Bresar. M., A commuting maps: A survey, Taiwanese. $J$. Math, 8 (2004), 361-397.
Daif, M. N., When is a Multiplicative derivation additive?, Int. J. Math. Sci., 14(3) (1991), 615-618.
[x] Dhara B., Remarks on generalized derivations in prime and semiprime rings, Inr. J. Math. Math. sci., (2010).
Dhara B., Kar S and Mondal. S_, A result on generalized derivations on lie ideals in prime rings, Beitr. Algebra Geom., $54(2013), 677-682$.
Dhara, B., and Shakir, A., On Multiplicative (generalized)-derivations in prime and semiprime rings, A equat. Math., $86(1)(2013), 65-79$.
Daif, M. N and Tammam-El-Sayaid M. S., Multiplicative generalized derivations which are additive, East-west $J$. Math., 9 (1997), No. 1, 31-37.
Goldman, H, and Semrl, P., Multiplicative derivations on $mathrm{C}(mathrm{X})$, Movarsh. Marh., 121(3) (1996), 189-197.
Herstein I. N., on the Lie structure of an associative ring. J. Algebra., 14 (1970), 561-571.
Hongan, M., Rehman, N., and Al-Omary, R.M., Lie ideals and jordan triple derivations in rings Rend. semin.Math. Univ. padova. 125 (2011), $147-156$.
Koc. E and Golbasi. O, On Multiplicative generalized derivations on Lie ideals in semiprime rings II, Palestine J. Math., 6(2017), 219-227.
Martindale III. W. S., When are multiplicative maps additive, proc. Am. Marh Sox., 21 (1969), 695-698.
Posner. E. C.. W. S., Denivations in Prime rings, proc. Am. Math. Soc, 8 (1957), 1093-1100.
[I8] Quadri_M.A., Khan. M. S., and Rehman., Generalized derivaitons and commutativity of prime rings. Indian $J$. pure Appl. Marh., 34 (2003), $1393-1396$.
Similar Articles
- J. C. Kanani, V. J. Kaneria, Graceful labeling in a graph consisting chord with quadrilateral snake , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- J. C. Kanani, V. J. Kaneria, Graceful labeling of combination graph derived by coupling a graph with quadrilateral snake , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.