A note on multiplicative(generalized)-derivations and Lie ideals in prime and semiprime rings

Downloads

Abstract

Let $R$ be a 2-torsion free semiprime ring and $U$ be a square closed Lie ideal of $R$. A mapping $F: R \longrightarrow R$ is called a multiplicative (generalized)- derivation if there exists a map $d: R \longrightarrow R$ such that $F(x y)=F(x) y+x d(y)$, for all $x, y \in R$. Suppose that $R$ admits a multiplicative(generalized)-derivation $F$ associated with a map $d$ such that $d(U) \subseteq U$. In the present paper, we shall prove that $d$ is commuting on $U$ if one of the following conditions holds: (i) $F([x, y])= \pm[d(x), y],(i i) F(x o y)= \pm(d(x) o y),(i i i) F([x, y])= \pm(d(x) o y),(i v) F(x o y)= \pm[d(x) o y],(v) F([x, y])=$ $\pm[F(x), y],($ vi) $F($ xoy $)= \pm[F(x)$ oy $],($ vii $) F([x, y])= \pm[F(x)$ oy $],($ viii $) F($ xoy $)= \pm[F(x), y]$ for all $x, y \in U$.

Keywords:

Semiprime ring, Prime ring, Lie ideal, Multiplicative(generalized)-derivation

Mathematics Subject Classification:

Mathematics
  • Pages: 961-965
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

[I] Ashraf. M., Ali A and Ali. S., Some commutativity theorems for rings with generalized derivations, South cast Asian Bull. Marh., 31 (2007), 415-421.

Ashraf. M and Rehman. N., On commutativity of rings with derivations, Resulss Math, 42 (2002), 3-8.

Ashraf. $M$ and Rehman. N., On derivations and commutativity in prime rings, East-west J. Math., 3(1) (2001), 87-91.

Daif, M. N., Bell, H. E., Remarks on derivations on semiprime rings, Int. J. Marh. Sch, 15(1) (1992), 205 206.

Bergen. J., Herstein I. N., Kerr. W. J., Lie Ideals and derivations of prime rings, $J$. Algebra., 17 (1981), 259. 267.

Bresar. M., A commuting maps: A survey, Taiwanese. $J$. Math, 8 (2004), 361-397.

Daif, M. N., When is a Multiplicative derivation additive?, Int. J. Math. Sci., 14(3) (1991), 615-618.

[x] Dhara B., Remarks on generalized derivations in prime and semiprime rings, Inr. J. Math. Math. sci., (2010).

Dhara B., Kar S and Mondal. S_, A result on generalized derivations on lie ideals in prime rings, Beitr. Algebra Geom., $54(2013), 677-682$.

Dhara, B., and Shakir, A., On Multiplicative (generalized)-derivations in prime and semiprime rings, A equat. Math., $86(1)(2013), 65-79$.

Daif, M. N and Tammam-El-Sayaid M. S., Multiplicative generalized derivations which are additive, East-west $J$. Math., 9 (1997), No. 1, 31-37.

Goldman, H, and Semrl, P., Multiplicative derivations on $mathrm{C}(mathrm{X})$, Movarsh. Marh., 121(3) (1996), 189-197.

Herstein I. N., on the Lie structure of an associative ring. J. Algebra., 14 (1970), 561-571.

Hongan, M., Rehman, N., and Al-Omary, R.M., Lie ideals and jordan triple derivations in rings Rend. semin.Math. Univ. padova. 125 (2011), $147-156$.

Koc. E and Golbasi. O, On Multiplicative generalized derivations on Lie ideals in semiprime rings II, Palestine J. Math., 6(2017), 219-227.

Martindale III. W. S., When are multiplicative maps additive, proc. Am. Marh Sox., 21 (1969), 695-698.

Posner. E. C.. W. S., Denivations in Prime rings, proc. Am. Math. Soc, 8 (1957), 1093-1100.

[I8] Quadri_M.A., Khan. M. S., and Rehman., Generalized derivaitons and commutativity of prime rings. Indian $J$. pure Appl. Marh., 34 (2003), $1393-1396$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

G. Naga Malleswari, S. Sreenivasulu, and G. Shobhalatha. “A Note on multiplicative(generalized)-Derivations and Lie Ideals in Prime and Semiprime Rings”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 961-5, https://www.malayajournal.org/index.php/mjm/article/view/1204.