Theoretical fixed point theorem on S-metric space under binary relation via implicit contractive condition with an application

Downloads

Abstract

In this paper, we extend and generalises the results by Ahmadullah et al. to self mappings on the S-metric space under a binary relation via implicit contractive condition with an application to an integral equation. We also provided an illustrative example.

Keywords:

S-metric space, binary relation, self-mapping, fixed point, implicit relation, integral equation

Mathematics Subject Classification:

Mathematics
  • Pages: 1019-1028
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

Alam, A., Imdad, M.: Relation-theoretic metrical coincidence theorems. Filomat, 31(14) (2017), 4421-4439.

Ahmadullah, M. D., Javid, A., Imdad, M.: Unified relation-theoretic metrical fixed point theorems under an implicit contractive condition with an application. Füed Point Theory and Application, 2016(1) (2016), 1-15.

Ahmadullah, M. D., Khan, A. R., Imdad, M.: Relationtheoretic contraction principle in metric-like as well as partial metric spaces. Bull. Math. Anal. Appl., 9(3) (2017), $31-41$.

Alam, A., Imdad, M.: Relation-theoretic contraction principle. J. Fixed Point Theory Appl., 17 (4) (2015), 693702.

Dhage, B. C.: Generalised metric space and topological structure. I. Analele Atintifice ale Universitatii Al. I. Cuza din lasi. Serie Noua Mathematica, 46(3) (2000), 1-24.

Chaipornjareansri, S.: Fixed point theorems for generalised weakly contractive mappings in S-metric spaces. Thai Journal of mathematics, (2018) (2018), 50-62.

Gubran. R., Imdad, M., Ahmadullah, M. D.: Relationtheoretic metrical fixed point theorems under nonlinear contractions. Fixed Point Theory, 2016 (2016), 1-18.

Imdad, M., Kumar Santosh and Khan M. S.,Remarks on some fixed point theorems satisfying implicit relations, Radovi Matematicki, 11(1) (2002), 135-143.

Kim, J. K., Sedghi, S., Gholidahneh, A., Rezaee, M. M.: Fixed point theorems in S-metric spaces. East Asian Math. J., 32(5) (2016), 677-684.

Kolman, B., Busby,R. C., Ross, S.: Discrete mathematical structures. 3rd edn. PHI Pvt. Ltd, New Delhi (2000).

Lipschutz, S.: Schaum's Outlines of Theory and Problems of Set Theory and Related Topics. McGraw-Hill, New York (1964).

Maddux, R. D.: Relation Algebras. Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, $150(2006)$.

Özgür, N. Y., Taş, N.: The Picard theorem on S-metric spaces. Acta Mathematica Scientia., 38(4) (2018), 12451258

Popa, V., Patriciu, A.: Fixed point for compatible mappings in S-metric spaces. Scientific Studies and Research. Series Mathematics and Informatics, 28(2) (2018), 6378.

Samet, B., Turinici, M.: Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal., 13 (2012), 82-97.

Sedghi, S., Van Dung, N.: Fixed point theorems on Smetric spaces. Matematički Vesnik, 255 (2014), 113-124.

Sedghi, S., Shobe, N., Aliouche, A.: A generalisation of fixed point theorem in S-metric spaces. Matematicki Vesnik, 64 (2012), 258-266.

Sedghi, S., Shobkolaei, N., Shahraki, M., Došenović, T.: Common fixed point for four maps in $S$ - metric spaces. Mathematical Sciences, 12 (2) (2018), 137-143.

Roldan Lopez de Hierro, A. F.: A unified version of Ran and Reurings theorem and Nieto and RodriguezLopezs theorem and low-dimensional generalisations. Appl. Math. Inf. Sci., 10 (2016), 383-393.

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

Lucas Wangwe, and Santosh Kumar. “Theoretical Fixed Point Theorem on S-Metric Space under Binary Relation via Implicit Contractive Condition With an Application”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 1019-28, https://www.malayajournal.org/index.php/mjm/article/view/1210.