Uniqueness and value sharing of meromorphic functions on annuli
Downloads
Abstract
In this paper, we study meromorphic functions that share only one value on annuli and prove the following results.
1. Let $f(z)$ and $g(z)$ be two non constant meromorphic functions in $\mathbb{A}\left(R_0\right)$, where $1<R_0 \leq+\infty, n \geq 6$. If $f^n f^{\prime} g^n g^{\prime}=1$, then $f \equiv d g$ or $g=c_1 e^{c z}$ and $f=c_2 e^{-c z}$, where $c, c_1$ and $c_2$ are constants and $\left(c_1 c_2\right)^{n+1} c^2=-1$.
2. Let $f(z)$ and $g(z)$ be two non constant entire functions in $\mathbb{A}\left(R_0\right)$, where $1<R_0 \leq+\infty, n \geq 1$. If $f^n f^{\prime} g^n g^{\prime}=1$, then $f \equiv d g$ or $g=c_1 e^{c z}$ and $f=c_2 e^{-c z}$, where $c, c_1$ and $c_2$ are constants and $\left(c_1 c_2\right)^{n+1} c^2=-1$.
Using the results (1) and (2) we prove, let $f(z)$ and $g(z)$ two non constant meromorphic functions on annuli and For $n \geq 11$, if $f^n f^{\prime}$ and $g^n g^{\prime}$ share the same nonzero and finite value $a$ with the same multiplicities on annuli, then $f \equiv d g$ or $g=c_1 e^{c z}$ and $f=c_2 e^{-c z}$, where $d$ is an $(n+1)^{t h}$ root of unity, $c, c_1$ and $c_2$ being constants.
Keywords:
Value Distribution Theory, meromorphic functions;, annuli.Mathematics Subject Classification:
Mathematics- Pages: 1071-1079
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
T. B. Cao, Z. S. Deng. On the uniqueness of meromorphic functions that share three or two finite sets on annuli, Proceeding Mathematical Sciences. 122(2012), 203-220.
T. B. Cao, H. X. Yi, Uniqueness theorems of meromorphic functions share sets IM on Annili, Acta Math.Sinica (Chin.Ser.), 54(2011), 623-632.
Y. X. Chen, Z. J. Wu. Exceptional values of meromorphic functions and of their derivatives on annuli, Ann. Polon.Math. 105(2012), 154-165.
H. Y. Xu, and Z. X. Xuan. The uniqueness of analytic functions on annuli sharing some values, Abstract and Applied analysis. 2012, Article ID 896596, 13 pages, 2012.
M. L. Fang. A note on a result of Singh and Kulkarni, Internat. J Math Sci. 23(4)(2000), 285-288.
A. Ya. Khrystiyanyn, A. A. Kondratyuk. On the Nevanlinna Theory for meromorphic functions on annuli. I, Mathematychin Studii. 23(1)(2005), 19-30.
A. Ya. Khrystiyanyn, A. A. Kondratyuk. On the Nevanlinna Theory for meromorphic functions on annuli. II, Mathematychin Studii. 24(2)(2005), 57-68.
T.B.Cao, H. X. Yi, H. Y. Xu. On the multiple values and uniqueness of meromorphic functions on annuli, Compute. Math. Appl. 58(7)(2009), 1457-1465.
Yu-Zan He and Xiu-Zhi Xiao. Algebroid functions and Ordinarry Difference Equations, Beijing; Science Press, (1988).
A. Fernandez. On the value distribution of meromorphic function in the punctured plane, Mathematychin Studii. $34(2)(2010), 136-144$
Meili Liang. On the value distribution of algebroid functions, Sop transactions on applied mathematics. $1(1)(2014)$.
Hayman W. K. Meromorphic functions, Oxford: Oxford University Press; (1964).
R. S. Dyavanal, Ashok Rathod. Uniqueness theorems for meromorphic functions on annuli, Indian Journal of Mathematics and Mathematical Sciences. 12(1)(2016), $1=10$.
R. S. Dyavanal, Ashok Rathod. Multiple values and uniqueness of meromorphic functions on annuli, International Journal Pure and Applied Mathematics. 107(4)(2016), 983-995.
R. S. Dyavanal, Ashok Rathod. On the value distribution of meromorphic functions on annuli, Indian Journal of Mathematics and Mathematical Sciences. 12(2)(2016), 203-217.
R. S. Dyavanal, Ashok Rathod. Some generalisation of Nevanlinna's five-value theorem for algebroid functions on annuli, Asian Journal of Mathematics and Computer Research, 20(2)(2017), 85-95.
R. S. Dyavanal, Ashok Rathod. Nevanlinna's five-value theorem for derivatives of meromorphic functions sharing values on annuli, Asian Journal of Mathematics and Computer Research. 20(1)(2017), 13-21.
R. S. Dyavanal, Ashok Rathod. Unicity theorem for algebroid functions related to multiple values and derivatives on annuli, International Journal of Fuzzy Mathematical Archive. 13(1)(2017), 25-39.
R. S. Dyavanal, Ashok Rathod. General Milloux inequality for algebroid functions on annuli, International Jour nal of Mathematics and applications. 5(3)(2017), 319 . 326.
Ashok Rathod. The multiple values of algebroid functions and uniqueness, Asian Journal of Mathematics and Computer Research. 14(2)(2016), 150-157.
Ashok Rathod. The uniqueness of meromorphic functions concerning five or more values and small functions on annuli, Asian Journal of Current Research. 1(3)(2016), 101-107.
Ashok Rathod. Uniqueness of algebroid functions dealing with multiple values on annuli, Journal of Basic and Applied Research International. 19(3)(2016), 157-167.
Ashok Rathod. On the deficiencies of algebroid functions and their differential polynomials, Journal of Basic and Applied Research International. 1(1)(2016), 1-11.
Ashok Rathod. The multiple values of algebroid functions and uniqueness on annuli, Konuralp Journal of Mathe matics. $5(2)(2017), 216-227$.
Ashok Rathod. Several uniqueness theorems for algebroid functions, J. Anal. 25(2)(2017), 203-213.
Ashok Rathod. Nevanlinna's five-value theorem for algebroid functions, Ufa Mathematical Journal. 10(2)(2018), $127-132$
Ashok Rathod. Nevanlinna's five-value theorem for derivatives of algebroid functions on annuli, Tamkang Journal of Mathematics. 49(2)(2018), 129-142.
S. S. Bhoosnurmath, R. S. Dyavanal, Mahesh Barki, Ashok Rathod. Value distribution for $n$ 'th difference operator of meromorphic functions with maximal deficiency sum, J. Anal. (2018). https://doi.org/10.1007/s41478$018-0130-5$.
Ashok Rathod. Characteristic function and deficiency of algebroid functions on annuli, Ufa Mathematical Journal. $11(1)(2019), 121-132$.
Ashok Rathod. Value distribution of a algebroid function and its linear combination of derivatives on annuli, Electronic Journal of Mathematical analysis and applications. $8(1)(2020), 129-142$.
Ashok Rathod. Uniqueness theorems for functions on annuli, Ufa Mathematical Journal. 12(1)(2020), 115-121.
Ashok Rathod. Uniqueness of algebroid functions in connection to Nevanlinna's five-value theorem, Jnanabha. $50(2)(2020), 160-116$.
A. A. Kondratyuk, I. Laine. Meromorphic functions in multiply connected domains, Ilpo laine(ed), Fourier Se ries Methods in Complex Analysis, Report Series, 10 , University of Joensuu, 1-111(2006).
Ashok Rathod, Naveenkumar S. H. On the uniqueness and value distribution of entire functions with their deriva-tives, International J. Math. Combin. 2(2020), 33-42.
Ashok Rathod. On the order of a meromorphic matrix valued function on annuli, International J. Math. Combin. $4(2020), 36-46$
Similar Articles
- M. Simaringa, K. Vijayalakshmi, Graph identification of different operations of vertex edge neighborhood prime , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.