A study on lower Q-level subsets of l-subsemiring of an (Q;L)-fuzzy l-subsemiring of a l-semiring

Downloads

Abstract

In this paper, we made an attempt to study the algebraic nature of $Q$-level $l$-subsemiring of an $(Q, L)$-fuzzy $l$-subsemiring of a $l$-semiring and we introduce the some theorems in lower $Q$-level subsets of $l$-subsemiring of an $(Q, L)$-fuzzy $l$-subsemiring of a $l$-semiring.

Keywords:

(Q;L)-fuzzy set, (Q;L)-fuzzy l-subsemiring, (Q;L)-fuzzy relation, Product of (Q;L)-fuzzy subsets, homomorphism, anti-homomorphism, Q-level subset

Mathematics Subject Classification:

Mathematics
  • R. Arokiaraj Department of Mathematics, Rajiv Gandhi College of Engineering and Technology, Pondicherry-607403, India.
  • V. Saravanan Department of Mathematics, FEAT, Annamalai University, Annamalainagar-608002, Tamil Nadu, India.
  • J. Jon Arockiaraj Department of Mathematics, St.Joseph’s College of Arts and Science, Cuddalore-607001, Tamil Nadu, India.
  • Pages: 1100-1104
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

S. Abou Zaid, On fuzzy subnear rings and ideals, Fuzzy Sets and Systents, 44(1991), 139-146.

》 M. Akram and K.H. Dar, On fuzzy $d$-algebras, Puerjab University louernal of Mathemarics, 37(2005), 61-76.

M. Akram and K.H. Dar, Fuzzy left $h$-ideals in hemirings with respect to a s-norm, International Joumal of Conputational and Applied Marhematics, 2(1)(2007), 7-14.

Asok Kumer Ray, On product of fuzzy subgroups, Fuezy Sets and Systents, 105(1999), 181-183.

B.Davvaz and Wieslaw_A_Dudek, Fuzzy n-array groups as a generalization of Rosen field fuzzy groups, Appl. Math. Leth., 20(2007), $1-16$.

V.N.Dixit, Rajesh Kumar, Naseem Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systent, 37(1990), 359-371.

K.H.Kim, On intuitionistic Q-fuzzy semi prime ideals in semi groups, Advances in Farzzy Mathematics, 1(1)(2006), $15-21$.

[x] N.Palaniappan and K.Arjunan, Operation on fuzzy and anti fuzzy ideals, Antaretica J. Marh., 4(1)(2007), 59-64.

Rajesh Kumar, Fuzzy Algebra, University of DeLhi Publication Division, 1(1993).

V.Saravanan and D.Sivakumar, A Study on Anti-Fuzzy Subsemiring of a Semiring, International Journal of Computer Applications, 35(5)(2011).

V.Saravanan and D.Sivakumar, Lower level subsets of Anti-Fuzzy Subsemiring of a semiring, AParipex Indian joumal of Research (ISSN 2250-1991), 1(1)(2012), 8081.

S.Sampathu, S_Anita Shanthi and A_Praveen Prakash, A Study on $(Q, L)$-fuzzy Normal Subsemiring of a Semiring, American Joumal of Applied Mathematics, $3(4)(2015), 185-188$.

P. Sivaramakrishna Das, Fuzzy groups and level subgroups, Joumal of Mathematical Analysis and Applications, 84(1981), 264-269.

A.Solairaju and R.Nagarajan, A New Structure and Construction of Q-Fuzzy Groups, Advances in Fuzzy Mathematics, $4(1)(2009), 23-29$.

A.Solairaju and R.Nagarajan, $Q$-fuzzy left $R$-subgroups of near rings w.r.t $T$-norms, Antanerica Joumal of Mathematics, $5(2008), 1-2$.

J. Tang, X. Zhang, Product Operations in the Category of L-fuzzy groups, J. Fuzzy Marh., 9(2001), 1-10.

W.B. Vasantha Kandasamy, Smarandache fuzzy algebra, American Research Press, Rehoboth, (2003).

L.A.Zadeh, Fuzzy sets, Informitiont and Controd, 8(1965), $338-353$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

R. Arokiaraj, V. Saravanan, and J. Jon Arockiaraj. “A Study on Lower Q-Level Subsets of L-Subsemiring of an (Q;L)-Fuzzy L-Subsemiring of a L-Semiring”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 1100-4, https://www.malayajournal.org/index.php/mjm/article/view/1230.