Global dominating function on intuitionistic fractional graph

Downloads

Abstract

In this paper, the concept of global dominating function, minimal global dominating function and the intuitionistic fractional global domination number of an intuitionistic fractional graph has been introduced. Intuitionistic fractional global domination number of some standard graphs such as complete intuitionistic fuzzy path, complete intuitionistic fuzzy cycle, complete intuitionistic fuzzy star and complete intuitionistic fuzzy wheel has been derived.

Keywords:

Intuitionistic fuzzy graph, Intuitionistic fractional graph, intuitionistic fractional global domination number, intuitionistic fuzzy path, intuitionistic fuzzy cycle, intuitionistic fractional star, intuitionistic fractional wheel

Mathematics Subject Classification:

Mathematics
  • M.G. Karunambigai Department of Mathematics, Sri Vasavi College, Erode - 638316, Tamil Nadu, India.
  • R. Indradevi Department of Mathematics, Sri Vasavi College, Erode - 638316, Tamil Nadu, India.
  • A. Sathishkumar Department of Mathematics, Sri Vasavi College, Erode - 638316, Tamil Nadu, India.
  • Pages: 1125-1134
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

S. Arumugam and K. Karuppasamy, Fractional Global Domination in Graphs,Discussiones Mathematicae Graph Theory., 30(1)(2010),33-44.

K. T. Atanassov, Intuitionistic fuzzy sets: theory and applications, Studies in Fuzziness and Soft Computing,Physica-Verlag, Heidelberg, New York, 1999.

J. A. Bondy, and U. S. R. Murty, Graph Theory with Applications,MacMillan, London, 976(1-25).

E. J. Cockayne, G. Fricke, S. T. Hedetniemi and C. M. Mynhardt, Properties of minimal dominating functions of graphs,ARS Combin., 41 (1995), 107-115.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced topics, Marcel Dekker Inc., New York, (1998).

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs,Marcel Dekker Inc., New York, (1998).

R. JahirHussain and S. Yahya Mohamed, Global Domination Set in Intuitionistic Fuzzy Graph,International Jour.

nal of Computational Engineering Research,4(9)(2014). $55-58$.

M. G. Karunambigai and R. Parvathi, Intuitionistic fuzzy graphs, Computational Intelligence, Theory and Applications, Springer Berlin Heidelberg, 2006, 139-150.

M. G. Karunambigai and A. Sathishkumar, Dominating function in intuitionistic fractional graph, Malaya Journal of Matematik,8(4)(2020), 1653-1660.

Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka and Masamichi Shimura, Fuzzy sets and their applications to cognitive and decision processes, (1975), 77-79.

A. Nagoor Gani and S. Shajitha Begum, Degree order and size in Intuitionistic fuzzy Graphs, International Journal of Algorithms, Comput. Mathe, 3(3)(2010).

G. Nirmal and M. Sheela, Global and Factor Domination in Fuzzy Graph, International Journal of Scientific and Research Publications, 2(6)(2012), 1-4.

R. Parvathi, M. G. Karunambigai and K. Atanassov, Opcrations on intuitionistic fuzzy graphs, Proceedings of IEEE International Conference on Fuzzy Systems, (2009), 1396-1401.

R. Parvathi and G. Thamizhendhi, Domination in intuitionistic fuzzy graphs, Fourteenth Im. conf. on IFGs, Sofia, NIFS16(2)(2010), 39-49.

E. Sampathkumar, The global domination number of a graph, Jour. Math. Phy. Sci., 23(5)(1989), 377-385.

E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory: A rational approach to the theory of graphs, Johin Wiley and Sons Inc., (1997).

A. Somasundaram and S. Somasundaram, Domination in fuzzy graph-I,Patter Recognition Letter, 19(9)(1998), $787-791$.

A. Somasundaram, Domination in fuzzy graphsII,Joumal of Fuzzy Mathematics, 20(2005), 281-288.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

M.G. Karunambigai, R. Indradevi, and A. Sathishkumar. “Global Dominating Function on Intuitionistic Fractional Graph”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 1125-34, https://www.malayajournal.org/index.php/mjm/article/view/1235.