Fuzzy quotient-3 cordial labeling on some path related graphs - Paper I

Downloads

Abstract

In this paper, we discuss the existence of fuzzy quotient-3 cordial labeling on some path related graphs. Let $G(V, E)$ be a simple, finite and planar graph of order $p$ and size $q$. Let $\sigma: V(G) \rightarrow[0,1]$ defined by $\sigma(v)=$ $\frac{r}{10}, r \in Z_4-\{0\}$ and for each $u v \in E(G)$, define $\mu: E(G) \rightarrow[0,1]$ by $\mu(u v)=\frac{1}{10}\left[\frac{3 \sigma(u)}{\sigma(v)}\right\rceil$ where $\sigma(u) \leq \sigma(v)$. When $v_\sigma(i)$ and $v_\sigma(j)$ differ by atmost 1 and $e_\mu(i)$ and $e_\mu(j)$ differ by atmost 1 , the graph $G$ is fuzzy quotient-3 cordial graph. where $v_\sigma(i)$ and $e_\mu(i)$ denotes the number of vertices and edges assigned with $i \in\left\{\frac{\gamma}{10}, \gamma \in Z_4-\{0\}\right\}$.

Keywords:

Cycle, Path, Fuzzy quotient-3 cordial graph

Mathematics Subject Classification:

Mathematics
  • P. Sumathi Department of Mathematics, C. Kandaswami Naidu College for Men, Chennai, Tamil Nadu, India.
  • J. Suresh Kumar Department of Mathematics, St. Thomas College of Arts and Science, Chennai, Tamil Nadu, India.
  • Pages: 1181-1198
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

Gallian, J. A. (2014). A dynamic survey of graph labeling. The Electronic journal of combinatorics, $17,60-62$.

Cahit, I. (1987). Cordial graphs-a weaker version of graceful and harmonious graphs_Arscombinatoria,23, $201-207$.

Sundaram, M., Ponraj, R., &Somasundaram, S. (2004). Product cordial labeling of graphs.Bull. Pure and Appl. Sci.(Math. & Stat.) E,23, 155-163.

Sundaram, M., Ponraj, R., &Somasundram, S. (2006). Total product cordial labeling of graphs.Bull. Pure Appl. Sci. Sect. E Math. Stat,25, 199-203.

Sundaram, M., Ponraj, R., &Somasundram, S. (2006). Some results on total product cordial labeling of graphs.J. Indian Acad. Math,28, 309-320.

Ponraj, R., Sivakumar, M., &Sundaram, M. (2012). kProduct cordial labeling of graphs.Int. J. Contemp. Math. Sciences,7(15), 733-742.

Jeyanthi, P., Maheswari, A. (2012). 3- Product cordial labelling. SUT J.Math, 48(12), 231-240.

Ponraj, R., Sivakumar, M., &Sundaram, M. (2012). On 4-product cordial graphs, Inter.J. Math. Archive,7, 2809 2814 .

Sivakumar, M. (2016). On 4-total product cordiality of some corona graphs.Internat. J. Math. Combin,3, 99-106.

Ponraj, R., &Adaickalam, M. M. (2015). Quotient cordial labeling of some star related graphs.The Journal of the Indian Academy of Mathematics,37(2), 313-324.

Sumathi, P., and J. Suresh Kumar. (2019). Fuzzy quotient3 cordial labeling of star related graphs-Paper I.Malaya Journal of Matematik, 79-82.

Sumathi, P., and J. Suresh Kumar. (2019). Fuzzy Quotient3 Cordial Labeling of Star Related Graphs-Paper II.Asia Mathematika, 3(2) 53-62.

Sumathi, P., and J. Suresh Kumar. (2020). Fuzzy Quotient3 Cordial Labeling of Some trees of diameter 2,3 and 4. Journal of engineering, computing and architecture, $10(3), 190-206$.

Sumathi, P., and J. Suresh Kumar. (2020). Fuzzy Quotient3 Cordial Labeling of Some trees of diameter 5- Part I. Journal of engineering, computing and architecture, $10(3), 1385-1408$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

P. Sumathi, and J. Suresh Kumar. “Fuzzy Quotient-3 Cordial Labeling on Some Path Related Graphs - Paper I”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 1181-98, https://www.malayajournal.org/index.php/mjm/article/view/1245.