Radio Heronian mean labeling of some Corona related graphs
Downloads
Abstract
A radio heronian mean labeling of a connected graph $\mathrm{G}$ is a one to one map $\mathrm{g}$ from the vertex set $V(G)$ to the set of natural numbers $N$ such that for any two distinct vertices $s$ and $t$ of $G, d(s, t)+\left\lceil\frac{g(s)+g(t)+\sqrt{g(s) g(t)}}{3}\right\rceil \geq 1+D$, where $D$ is the diameter of $G$. The radio heronian mean number of $\mathrm{g}, r h m n(\mathrm{~g})$, is the maximum number assigned to any vertex of G. The radio heronian mean number of $\mathrm{G}, \operatorname{rhmn}(G)$, is the minimum value of $\operatorname{rhmn}(\mathrm{g})$, taken overall radio heronian mean labelings $\mathrm{g}$ of $\mathrm{G}$. In this paper, we investigate the radio heronian mean number of $T_n \odot K_1, I T_n \odot K_1$ and $Q_n \odot K_1$.
Keywords:
Radio Heronian mean labeling, radio heronian mean number, distance, eccentricity and diameterMathematics Subject Classification:
Mathematics- Pages: 1212-1215
- Date Published: 01-01-2021
- Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatories, 18(2018), #DS6.
Gray, Chartrand, David Erwin, Ping Zhang, Frank Harary, Radio labeling of graphs, Bull.Inss. Combin. Appl., 33(2001), 77-85.
F. Harary, Graph Theory, Narosa publishing House Reading, New Delli, 1988.
R. Ponraj, S. Sathish Narayanan and R. Kala, Radio mean labeling of graph, AKCE Intemational Journal of Graphs and combinatories, 12(2015), 224-228.
R. Ponraj, S. Sathish Narayanan, On Radio mean number of some graphs, Intemational J. Mah. Combinatories, $3(2014), 41-48$.
S.S. Sandya, E. Ebin Raja Merly and S.D. Deepa Heronian mean labeling of graphs, Intemarional Marhematical Forum, 12(15)(2017), 705-713.
K. Sunitha, C. David Raj and A. Subramanian, Radio mean labeling of path and cycle related graphs, Global Journal of Mathematical Sciences: Theory and Practical, $9(3)(2017), 337-345$.
Similar Articles
- C. Jayasekaran, A. Sheeba, Relatively prime restrained geodetic number of graphs , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.