Remarks on the fractional abstract differential equation with nonlocal conditions

Downloads

DOI:

https://doi.org/10.26637/MJM0704/0014

Abstract

In this paper, we study the existence and uniqueness of a solution to an initial value problem for a class of nonlinear fractional involving Riemann-Liouville derivative with nonlocal initial conditions in Banach spaces. We prove our main result by introducing a regular measure of noncompactness in the weighted space of continuous functions and using fixed point theory. Our result improve and complement several earlier related works. An example is given to illustrate the applications of the abstract result.

Keywords:

Riemann-Liouville fractional derivative, Riemann-Liouville fractional integral, nonlocal initial conditions, point fixed, measure of noncompactness

Mathematics Subject Classification:

Mathematics
  • Mohammed Benyoub Department of Mathematics, University Djillali Liab`es of Sidi Bel-Abb`es, B.P.89, 22000, Sidi Bel-Abb`es, Algeria.
  • Samir Benaissa Department of Mathematics, University Djillali Liab`es of Sidi Bel-Abb`es, B.P.89, 22000, Sidi Bel-Abb`es, Algeria.
  • Kacem Belghaba Department of Mathematics, Laboratory of Mathematics and its applications, University of Oran1 A.B, 31000 Oran, Algeria.
  • Pages: 709-715
  • Date Published: 01-10-2019
  • Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)

Abbas S.,Benchohra M.,N'Guérékata G.M., Topics in fractional differential equations. Springer, New York $(2012)$

Agarwal R.P,Lupulescu V.,O'Regan D., ur RahmanG., Fractional calculus and fractional differential equations in nonreflexive Banach spaces, Commun. Nonlinear Sci. Numer.Simulat., 2015, 20, 59-73.

Aghajani A.,Pourhadi E.,Trujillo J.J., Application of measure of noncompactness to Cauchy problem for fractional differential equations in Banach spaces, Frac. Calc. Appl. Annl., 2013, 16, 362-377.

Aizicovici S., McKibben M., Existence results for a class of abstract nonlocal Cauchy problems, Nonlinear Anal. $T M A, 2000,39,649-668$.

Akhmerov R.R.,Kamenskii M.I.,Potapov A.S.,Rodkina A.E.,Sadovskii B.N., Measures of noncompactness and condensing operators. Birkhauser, Boston, Basel, Berlin $(1992)$

Banas.J ,Goebel.K, Measure of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Math., Vol 60, Dekker, New York, 1980

Bothe D., Multivalued perturbations of m-accretive differential inclusions, Israel J. Math., 1998, 108, 109-138.

Byszewski L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J.Math. Anal. Appl., 1991, 162, 494505.

Delbosco D., Rodino L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 1996, 204, 609-625.

Deimling K., Nonlinear functional analysis. SpringerVerlag, Berlin, 1985.

Deng K., Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, $J$. Math. Anal. Appl., 1993, 179, 630-637.

Diethelm K., The analysis of fractional differential equations. Lecture Notes in Mathmatics 2004, Springer-verlag, Berlin, 2010.

Dong Q.,Li G., Measure of noncompactness and semilinear nonlocal functional differential equations in Banach spaces, Acta Mathematica Sinica, English Series., 2015, 31, No. $1,140-150$.

Gaston M., N'Guérékata, A Cauchy problem for some fractional abstract differential equation with non local conditions, ScienceDirect Nonlinear Analysis ., 2009, 70, $1873-1876$

Gaston M., N'Guérékata, Existence and uniquencess of an integral to some Cauchy problem with nonlocal conditions, In: Differential and Difference Equations and Applications, Hindawi Publ.Cop,New York, 2006, 843-849.

Glockle W.G., Nounenmacher T.F, A fractional calculus approach of self-similar protein dynamics, Biophys.J.,1995, 68, 46-53.

Heinz H.P., On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. TMA., 1983, 7, 1351-1371.

Hernández E., O'Regan D., On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc, $2013,141(5), 1641-1649$.

Heymans N., Podlubny I., physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta., $2006,45,765-771$.

Kilbas A.A.,Srivastava H.M.,Trujillo J.J., Theory and applications of fractional differential equations. NorthHolland Mathematics studies 204. Elsevier Science B.V., Amsterdam (2006)

Mainandi F., Fractional calculus: Some basic problems in continuum and statistical mechanis. In: Carpinteri A.,Mainardi F.(eds.) Fractals and fractional calculus in continuum mechanics, Springer-verlag, Wien, 1997, 291348.

Miller K.S.,Ross B., An introdution to the fractional calculus and differential equations. John Wiley, New York (1993)

Lakshmikantham V., Devi J.V., Theory of fractional differential equations in Banach space, European J. Pur Appl. Math., 2008, 1(1), 38-45.

Lasry J., Robert R., Analyse nonlineare multique, VER mathematiques de la decision, Numero 249. Université de Paris-Dauphine.

Liu L., Guo, F., Wu C., Wu Y., Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 2005, $309,638-649$.

Podlubny I., Fractional differential equations. Academic Press, SanDiego (1999)

Samko S.G., Kilbas A.A., Marichev O.L., Fractional In- tegral and Derivatives, Theory and applications. Gordon and Breach, Yverdon (1993)

Toledano J.M.A.,Benavides T.D.,Azedo D.L., Measures of noncompactness in metric fixed point theory. Birkhauser, Basel (1997).

  • NA

Metrics

Metrics Loading ...

Published

01-10-2019

How to Cite

Mohammed Benyoub, Samir Benaissa, and Kacem Belghaba. “Remarks on the Fractional Abstract Differential Equation With Nonlocal Conditions”. Malaya Journal of Matematik, vol. 7, no. 04, Oct. 2019, pp. 709-15, doi:10.26637/MJM0704/0014.