\(C_m\)-\(E\)-super magic graceful labeling of graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0015Abstract
A simple graph $G$ admits an $H$-covering if every edge in $E(G)$ belongs to a subgraph of $G$ isomorphic to $H$. The graph $G$ is said to be $H$-magic if there exists a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for every subgraph $H^{\prime}$ of $G$ isomorphic to $H, \sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=M$ for some positive integer $M$. An $H$-E-super magic graceful labeling ( $H$ - $E$-SMGL) is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ with the property $f(E(G))=\{1,2, \ldots, q\}$ such that $\sum_{v \in V\left(H^{\prime}\right)} f(v)-\sum_{e \in E\left(H^{\prime}\right)} f(e)=M$ for some positive integer $M$. In this paper, we introduce $H-E$-SMGL and study $C_m-E$-super magic graceful labeling of generalized book graph.
Keywords:
H-covering, H-magic labeling, H-E-super magic labeling, H-E- super magic graceful labelingMathematics Subject Classification:
Mathematics- Pages: 716-719
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
J.A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin., (2017), #DS6.
A. Gutierrez, A. Llad,Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005) 43-56.
S. W. Golomb,How to number a graph, in Graph Theory and Computing, R. C. Road, ed., Academic Press, New York (1972), 23-37.
A. Llad, J. Moragas, Cycle- magic graphs, Discrete Math. 307 (23) (2007) 2925-2933.
G. Marimuthu and M.Balakrishnan, E-super vertex magic labeling of graphs, Discrete Appl. Math. 160 (2012) 1766-1774.
A. Rosa,On certain valuations of the vertices of a graph, Theory of Graphs (Inter. Nat. Sym. Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, (1967), 349355.
Sedlàček, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, June (1963) 163167.
S. StalinKumar, G. Marimuthu, H-E-super Magic decomposition of complete bipartite graphs, Electron. Notes Discrete Math. 48(2015), 297-300.
- NA
Similar Articles
- Mohammed Benyoub, Samir Benaissa, Kacem Belghaba, Remarks on the fractional abstract differential equation with nonlocal conditions , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.