\(C_m\)-\(E\)-super magic graceful labeling of graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0704/0015

Abstract

A simple graph $G$ admits an $H$-covering if every edge in $E(G)$ belongs to a subgraph of $G$ isomorphic to $H$. The graph $G$ is said to be $H$-magic if there exists a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for every subgraph $H^{\prime}$ of $G$ isomorphic to $H, \sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=M$ for some positive integer $M$. An $H$-E-super magic graceful labeling ( $H$ - $E$-SMGL) is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ with the property $f(E(G))=\{1,2, \ldots, q\}$ such that $\sum_{v \in V\left(H^{\prime}\right)} f(v)-\sum_{e \in E\left(H^{\prime}\right)} f(e)=M$ for some positive integer $M$. In this paper, we introduce $H-E$-SMGL and study $C_m-E$-super magic graceful labeling of generalized book graph.

Keywords:

H-covering, H-magic labeling, H-E-super magic labeling, H-E- super magic graceful labeling

Mathematics Subject Classification:

Mathematics
  • Sindhu Murugan Research Scholar, Reg No-18213162092011, Scott Christian College(Autonomous), Nagercoil-629003. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.
  • S. Chandra Kumar Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003, Tamil Nadu, India.
  • Pages: 716-719
  • Date Published: 01-10-2019
  • Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)

J.A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin., (2017), #DS6.

A. Gutierrez, A. Llad,Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005) 43-56.

S. W. Golomb,How to number a graph, in Graph Theory and Computing, R. C. Road, ed., Academic Press, New York (1972), 23-37.

A. Llad, J. Moragas, Cycle- magic graphs, Discrete Math. 307 (23) (2007) 2925-2933.

G. Marimuthu and M.Balakrishnan, E-super vertex magic labeling of graphs, Discrete Appl. Math. 160 (2012) 1766-1774.

A. Rosa,On certain valuations of the vertices of a graph, Theory of Graphs (Inter. Nat. Sym. Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris, (1967), 349355.

Sedlàček, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, June (1963) 163167.

S. StalinKumar, G. Marimuthu, H-E-super Magic decomposition of complete bipartite graphs, Electron. Notes Discrete Math. 48(2015), 297-300.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2019

How to Cite

Sindhu Murugan, and S. Chandra Kumar. “\(C_m\)-\(E\)-Super Magic Graceful Labeling of Graphs”. Malaya Journal of Matematik, vol. 7, no. 04, Oct. 2019, pp. 716-9, doi:10.26637/MJM0704/0015.