Generalized interval valued fuzzy ideals of \(KU\)-algebra
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0018Abstract
In this paper, we introduced the concept of "belongs to" relation $\left(\epsilon_{\hat{a}}\right)$ between interval valued fuzzy point to an interval valued fuzzy set with respect to an interval $\hat{a}$ and "quasi-coincident with " relation $\left(q_{(\hat{a}, \hat{b})}\right)$ between interval valued fuzzy point to an interval valued fuzzy set with respect to intervals $\hat{a}, \hat{b}$ and combining both the concepts we define $\left(\hat{a}, \hat{b} ; \in_{\hat{a}}, \in_{\hat{a}} \vee q_{(\hat{a}, \hat{b})}\right)$-interval valued fuzzy KU-ideals in KU-algebras and investigated some of their related properties. Some characterizations of these generalized interval valued fuzzy KU-ideal are derived.
Keywords:
KU-algebra, Fuzzy ideal, fuzzy ideal, HomomorphismMathematics Subject Classification:
Mathematics- Pages: 735-745
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
M. Akram, N. Yaqoob and J. Kavikumar, Interval valued $(tilde{theta}, tilde{delta})$-fuzzy KU-ideals of KU-algebras, Int. J. Pure Appl. Math., 92(3)(2014), 335-349.
$mathrm{S}$. K. Bhakat and P. Das, $(in, in vee q)$-fuzzy subgroup, Fuzzy Sets and Systems, 80(1996), 359-368.
S. K. Bhakat and P. Das, $(in vee V q)$-level subset, Fuzzy Sets and Systems, 103(3)(1999), 529-533.
$mathrm{R}$. Biswas, Rosenfels fuzzy subgroups with interval valued membership functions, Fuzzy Sets and Systems, 63(1994), 87-90.
P. Das, Products of $left(a, b ; epsilon_a, epsilon_a vee q_{(a, b)}right)$-Fuzzy subgroups, J. Fuzzy Math., 4(4)(1996), 871-878.
P. Das, Fuzzy subalgebras redefined, J. Fuzzy Math., $3(3)(1995), 517-527$
T. K. Dutta, S. Kar, and S. Purkait, Interval-valued fuzzy prime and semiprime ideals of a hyper semiring, Annals of Fuzzy Mathematics and Informatics, 9(2)(2015), 261278.
Y. Imai and K. Iseki, On Axiom systems of Propositional calculi XIV,Proc, Japan Academy, 42(1966), 19-22.
K. Iseki, An algebra related with a propositional calculus, Proc. Japan Academy, 42(1966), 26-29.
K. Iseki, On some ideals in BCK-algebras,Math. Seminar Notes, 3 (1975), 65-70.
D. S. Lee, and C. H. Park, Interval valued $left(in V q_kright)$ Fuzzy Ideals Rings, International Mathematical Forum, $4(13)(2009), 623-630$.
P. P. Ming and L. Y. Ming, Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Maths. Anal. Appl., 76(1980), 571-599.
V. Murali, Fuzzy points of equivalent fuzzy subsets,Inform $S c i, 158$ (2004), 277-288.
G. Muhiuddin, Bipolar fuzzy KU-subalgebras and ideals of KU-algebras, Ann. Fuzzy Math. Inform., 8(3)(2014), $409-418$
J. Neggers and H. S. Kim, On B-algebras, Math. Vensik, $54(2002), 21-29$
C. Prabpayak and U. Leerawat,On ideals and congruence in KU-algebras,scientia Magna, international book series, $5(1)(2009), 54-57$
C. Prabpayak and U. Leerawat, On Isomorphisms of $K U$-algebras, Scientia Magna, International Book Series, $5(3)(2009), 25-31$.
S. M. Mostafa, M. A. Abd-Elnaby and M.M.M. Yousef, Fuzzy ideals of KU-Algebras, Int. Math. Forum, $6(63)(2011), 3139-3149$.
Mostafa, S.M., Abd-Elnaby, M.A., Elgendy, O.R. Interval-valued fuzzy KU-ideals in KU-algebras, Int. Math. Forum, 6(64)(2011), 3151-3159.
S. M. Mostafa and F. F. Kareem, N-fold commutative KU-Algebras,Int. J. Algebra, 8(6)(2014), 267-275.
S. M. Mostafa and F. F. Kareem, Fuzzy n-fold KU-ideals KU-Algebras,Ann. Fuzzy Math., 4(3)(2014), 12-23.
M. Gulistan, M. Shahzad and S. Ahmed, On $(alpha, beta)$-fuzzy KU-ideals of KUalgebras, Afr. Mat., (2014), 1-11.
O. G. Xi, Fuzzy BCK algebras, Math Japonica, 36(1991), 935-942.
Y. B. Yun, On $(alpha, beta)$-Fuzzy ideals of BCK/BCI-Algebras, Scientiae Mathematicae Japonicae, 101-105.
Y. B. Yun, Interval-valued fuzzy subalgebras/ideals in BCK-algebras, Scientiae Mathematicae, 3(3)(2000), $435-$ 444.
Y. B. Jun and K.H. Kim, Interval-valued fuzzy rsubgroups of near-rings, Indian Journal of Pure and Applied Mathematics, 33(1)(2002), 71-80.
L. A. Zadeh, Fuzzy sets,Information and Control, $$
(1965), 338-353 text {. }
$$
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf Science., $8(1975), 199-249$.
J. Zhan, Y. B. Jun and B. Davvaz, On ( $in mathcal{V})$-Fuzzy Ideals of BCI-algebras, Iranian Journal of Fuzzy Systems, $6(1)(2009), 81-94$
X. Ma,J. Zhan, B. Davvaz and Y. B. Jun, Some kinds of $left(in vee q_kright)$-interval-valued fuzzy ideals of $B C I$-algebras, Information Sciences, 178(2008), 3738-3754.
- NA
Similar Articles
- Arif Mehmood Khattak, Fawad Nadeem, Muhammad Zamir, Giorgio Nordo, Choonkil Park, Mehak Gul, Other separation axioms in soft bi-topological spaces , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.