Generalized interval valued fuzzy ideals of KU-algebra

Downloads

DOI:

https://doi.org/10.26637/MJM0704/0018

Abstract

In this paper, we introduced the concept of "belongs to" relation $\left(\epsilon_{\hat{a}}\right)$ between interval valued fuzzy point to an interval valued fuzzy set with respect to an interval $\hat{a}$ and "quasi-coincident with " relation $\left(q_{(\hat{a}, \hat{b})}\right)$ between interval valued fuzzy point to an interval valued fuzzy set with respect to intervals $\hat{a}, \hat{b}$ and combining both the concepts we define $\left(\hat{a}, \hat{b} ; \in_{\hat{a}}, \in_{\hat{a}} \vee q_{(\hat{a}, \hat{b})}\right)$-interval valued fuzzy KU-ideals in KU-algebras and investigated some of their related properties. Some characterizations of these generalized interval valued fuzzy KU-ideal are derived.

Keywords:

KU-algebra, Fuzzy ideal, fuzzy ideal, Homomorphism

Mathematics Subject Classification:

Mathematics
  • S. R. Barbhuiya Department of Mathematics, Srikishan Sarda College, Hailakandi-788151, Assam, India.
  • A. K. Dutta Department of Mathematics, D.H.S.K. College, Dibrugarh, Assam- 786001, India.
  • Pages: 735-745
  • Date Published: 01-10-2019
  • Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)

M. Akram, N. Yaqoob and J. Kavikumar, Interval valued $(tilde{theta}, tilde{delta})$-fuzzy KU-ideals of KU-algebras, Int. J. Pure Appl. Math., 92(3)(2014), 335-349.

$mathrm{S}$. K. Bhakat and P. Das, $(in, in vee q)$-fuzzy subgroup, Fuzzy Sets and Systems, 80(1996), 359-368.

S. K. Bhakat and P. Das, $(in vee V q)$-level subset, Fuzzy Sets and Systems, 103(3)(1999), 529-533.

$mathrm{R}$. Biswas, Rosenfels fuzzy subgroups with interval valued membership functions, Fuzzy Sets and Systems, 63(1994), 87-90.

P. Das, Products of $left(a, b ; epsilon_a, epsilon_a vee q_{(a, b)}right)$-Fuzzy subgroups, J. Fuzzy Math., 4(4)(1996), 871-878.

P. Das, Fuzzy subalgebras redefined, J. Fuzzy Math., $3(3)(1995), 517-527$

T. K. Dutta, S. Kar, and S. Purkait, Interval-valued fuzzy prime and semiprime ideals of a hyper semiring, Annals of Fuzzy Mathematics and Informatics, 9(2)(2015), 261278.

Y. Imai and K. Iseki, On Axiom systems of Propositional calculi XIV,Proc, Japan Academy, 42(1966), 19-22.

K. Iseki, An algebra related with a propositional calculus, Proc. Japan Academy, 42(1966), 26-29.

K. Iseki, On some ideals in BCK-algebras,Math. Seminar Notes, 3 (1975), 65-70.

D. S. Lee, and C. H. Park, Interval valued $left(in V q_kright)$ Fuzzy Ideals Rings, International Mathematical Forum, $4(13)(2009), 623-630$.

P. P. Ming and L. Y. Ming, Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Maths. Anal. Appl., 76(1980), 571-599.

V. Murali, Fuzzy points of equivalent fuzzy subsets,Inform $S c i, 158$ (2004), 277-288.

G. Muhiuddin, Bipolar fuzzy KU-subalgebras and ideals of KU-algebras, Ann. Fuzzy Math. Inform., 8(3)(2014), $409-418$

J. Neggers and H. S. Kim, On B-algebras, Math. Vensik, $54(2002), 21-29$

C. Prabpayak and U. Leerawat,On ideals and congruence in KU-algebras,scientia Magna, international book series, $5(1)(2009), 54-57$

C. Prabpayak and U. Leerawat, On Isomorphisms of $K U$-algebras, Scientia Magna, International Book Series, $5(3)(2009), 25-31$.

S. M. Mostafa, M. A. Abd-Elnaby and M.M.M. Yousef, Fuzzy ideals of KU-Algebras, Int. Math. Forum, $6(63)(2011), 3139-3149$.

Mostafa, S.M., Abd-Elnaby, M.A., Elgendy, O.R. Interval-valued fuzzy KU-ideals in KU-algebras, Int. Math. Forum, 6(64)(2011), 3151-3159.

S. M. Mostafa and F. F. Kareem, N-fold commutative KU-Algebras,Int. J. Algebra, 8(6)(2014), 267-275.

S. M. Mostafa and F. F. Kareem, Fuzzy n-fold KU-ideals KU-Algebras,Ann. Fuzzy Math., 4(3)(2014), 12-23.

M. Gulistan, M. Shahzad and S. Ahmed, On $(alpha, beta)$-fuzzy KU-ideals of KUalgebras, Afr. Mat., (2014), 1-11.

O. G. Xi, Fuzzy BCK algebras, Math Japonica, 36(1991), 935-942.

Y. B. Yun, On $(alpha, beta)$-Fuzzy ideals of BCK/BCI-Algebras, Scientiae Mathematicae Japonicae, 101-105.

Y. B. Yun, Interval-valued fuzzy subalgebras/ideals in BCK-algebras, Scientiae Mathematicae, 3(3)(2000), $435-$ 444.

Y. B. Jun and K.H. Kim, Interval-valued fuzzy rsubgroups of near-rings, Indian Journal of Pure and Applied Mathematics, 33(1)(2002), 71-80.

L. A. Zadeh, Fuzzy sets,Information and Control, $$

(1965), 338-353 text {. }

$$

L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf Science., $8(1975), 199-249$.

J. Zhan, Y. B. Jun and B. Davvaz, On ( $in mathcal{V})$-Fuzzy Ideals of BCI-algebras, Iranian Journal of Fuzzy Systems, $6(1)(2009), 81-94$

X. Ma,J. Zhan, B. Davvaz and Y. B. Jun, Some kinds of $left(in vee q_kright)$-interval-valued fuzzy ideals of $B C I$-algebras, Information Sciences, 178(2008), 3738-3754.

  • NA

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

PDF views
37
Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20266.0
|

Published

01-10-2019

How to Cite

S. R. Barbhuiya, and A. K. Dutta. “Generalized Interval Valued Fuzzy Ideals of KU-Algebra”. Malaya Journal of Matematik, vol. 7, no. 04, Oct. 2019, pp. 735-4, doi:10.26637/MJM0704/0018.