Common fixed point theorems for generalized contractive mappings in an \(F\)−cone metric space over a Banach algebra
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0020Abstract
This paper is dealt with some common fixed point theorems for generalized contractive mappings in an \(F\)− cone metric space over a Banach algebra. Examples have been cited in support of our theorems.
Keywords:
Banach algebra, F, common fixed pointMathematics Subject Classification:
Mathematics- Pages: 751-758
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
[I] Bakhtin, I.A., The contraction mapping principle in quasimetric spaces, Functional Analysis, 30. Ulyanowsk. Gos. Ped. Inst, Ulyanovsk (1989).
Dey, D., Saha, M., Partial cone metric space and some fixed point theorems. Turkic World Math. Soc. J. App. Eng. Marh., 3(1) (2013), 1-9.
Du. W.S., A note on cone metric fixed point theory and its equivalence, Novilinear Anal., 72(5) (2010), 2259-2261.
Fernandez, J., Malviya, N., Shukla, S., Cone b-metric like spaces over Banach algebra and fixed poant theorems with application, Asian J. Math. Compur. Res., (accepted).
Fernandez, J., Saxena, K., Malviya, N., Fixed points of expansive maps in partial cone metric spaces, Gazi Uhiv J. Sei. $27(4)(2014), 1085-1091$.
Fernandez, J., Malviya, N., Radenović, S., Saxena, K., F-cone metric spaces over Banach algebra, Fixed Point Theory Appl. 2017, DOI 10. 1186/s13663-017-0600-5 (2017).
Fernandez, J., Saxena, K., Malviya, N., On cone $b_2-$ metric spaces over Banach algebra, Sao Paulo J. Marh. Sci., (accepted).
[x] Fernandez, J., Modi, G., Malviya, N., Some fixed point theorems for contractive maps in $N$-cone metric spaces, Math. Sci. , 9 (2015), doi:10.1007/s40096-015-0145-x, 33-38.
Fernandez, J., Malviya , N., Fisher, B., The asymptotically regularity and sequences in partial cone b-metric spaces with application, Filomat, 30(10) (2016), doi:10.2298/FIL1610749F, 2749-2760.
Fernandez, J., Saelee, S., Saxena, K., Malviya, N., Kumam, P., The $A$-cone metric space over Banach algebra with application of generalized Lipschitz and expansive maps in fixed point theory and integral equations, Cogent Marh., 4, $1282690(2017)$.
Fernandez, J., Saxena, K., Modi, G., The $N$-cone metric space over Banach algebra and sone fixed point theorems, (communicated).
Fernandez, J., Saxena, K., Malviya, N., The $N_b-$ cone metric space over Banach algebra, (communicated).
Fernandez, J., Saxena, K., Malviya, N., The $N_p-$ cone metric space over Banach algebra and some fixed point theorems, (communicated).
Huang, H., Radenovir , S. Common fixed point theorems of generalized Lipschitz mappings in cone metric spaces over Banach algebras, Appl. Math. Inf. Sch, 9(6) (2015), 2983-2990.
Huang, H., Radenović, S., Common fixed point theorems of generalized Lipschitz mappings in cone $b$-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl, 8 (2015), 787-799.
Huang, L.G., Zhang, X., Cone metric spaces and fixed point theorem for contractive mappings, J. Marh. Anal. Appl., 332(2) (2007), 1468-1476.
Kadelburg, Z., Radenović, S., Rakočevix', V., A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., 24 (2011), 370-374.
Kadelburg, Z, Radenović, S., A note on various types of cones and fixed point results in cone metric spaces, Asian J. Math. Appl. 2013, Article ID ama0104 (2013).
Laha, A.K., Saha, M., Fixed point on $alpha-psi$ multivalued contractive mappings in cone metric space, Acta El Commentariones Universinaris Tartuensis de Marhematica, 20(1) (2016).
Liu, H., Xu, S., Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl. 2013, 320 (2013).
Malviya, N., Fisher, B., $N$-cone metric space and fixed points of asymptotically regular maps, Filomat J. Math., (preprint).
Matthews, S.G., Partial metric topology, Ann. N.Y. Acad. Sci, 728(1) (1994), 183-197.
Radenović, S., Rhoades, B.E., Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., 57 (2009), 1701-1707.
Rudin, W., Functional Analysis, 2nd Edn. McGraw-Hill, NewYork (1991).
$mathrm{Xu}, mathrm{S}_{text {-, Radenoviŕ, S. S. Fixed point theorems of gener- }}$ alized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl. 2014, 102 (2014).
- NA
Similar Articles
- N.U. Khan, S.W. Khan, Integral transforms concerning generalized multiindex Bessel Maitland function , Malaya Journal of Matematik: Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.