Vertex semi-middle graph of a graph

Downloads

DOI:

https://doi.org/10.26637/MJM0704/0025

Abstract

In this communication, the vertex semi-middle graph of a graph $M_v(G)$ is introduced. We obtain a characterization of graphs whose $M_v(G)$ is planar, outerplanar and minimally non-outerplanar. Further, we obtain $M_v(G)$ is Eulerian, crossing number one and crossing number two.

Keywords:

Crossing number, Middle graph, Planar, Semientire graph

Mathematics Subject Classification:

Mathematics
  • Pages: 786-789
  • Date Published: 01-10-2019
  • Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)

Harary F. Annals of New york, Academy of sciences.175, $198(1977)$.

Sedlacek J. Some Properties of Interchange Graphs. The Graphs and the Applications. Academic press, New york, (1962).

T.Hamada and I. Yoshimura. Traversability and connectivity of the middle graph of a graph. Discrete Mathematics, $14(1976), 247-255$.

V.R.Kulli and H.P.Patil. Graph equations for line graphs, middle graphs amd entire graphs. J.Karnatak University Sci., 23(1978), 25-28.

V.R.Kulli and H.P.Patil. Middle graphs and crossing numbers. Discussion Mathematics, 7(1985), 97-106.

Venkanagouda M. Goudar. On pathos vertex semientire graph of a tree. International Journal of Applied Mathematical Research, 1(4)(2012), 666-670.

Venkanagouda M. Goudar and Rajanna N E. Vertex semientire block graph. Global Journal of Science Frontier Research $(F)$, Vol XIV, Issue I, Version I(2014).

  • NA

Metrics

Metrics Loading ...

Published

01-10-2019

How to Cite

Rajendra Prasad K C, Niranjan K M, and Venkanagouda M Goudar. “Vertex Semi-Middle Graph of a Graph”. Malaya Journal of Matematik, vol. 7, no. 04, Oct. 2019, pp. 786-9, doi:10.26637/MJM0704/0025.