Travelling salesman model in fuzzy environment
Downloads
DOI:
https://doi.org/10.26637/MJM0704/0032Abstract
In classical travelling salesman model, the objective is to visit n cities, starting from his home city and returning to home city, with minimum cost. In this paper, travelling cost is represented by trapezoidal fuzzy number. TrFN is defuzzified by using linear ranking function proposed by Maleki [22]. Classical travelling salesman model is extended to solve FNTSP.
Keywords:
Trapezoidal fuzzy number, Linear Ranking functionMathematics Subject Classification:
Mathematics- Pages: 826-831
- Date Published: 01-10-2019
- Vol. 7 No. 04 (2019): Malaya Journal of Matematik (MJM)
D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Application, Academic, New York, 1980.
A. Jones, A. Kaufmann and H.-J. Zimmermann, Fuzzy Sets Theory and Applications, Reidel, Dordrecht, 1985.
A. Kaufmann and M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand Reinhold, New York, 1985.
H.-J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, Hinghum, 1985.
T. J. Ross, Fuzzy Logic with Engineering Applications, John Wiley and Sons, 2004.
R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment, Management Sciences, 17(1970), 141-164.
E.L. Hannan, Linear programming with multiple fuzzy goals, Fuzzy Sets Syst., 6(1981), 235-248.
M.P. Hansen, Use of substitute scalarizing functions to guide local search based Heuristics: The case of MOTSP, J. Heuristics, 6(2001), 419-431.
A. Jaszkiewicz, Genetic local search for multiple objectives combinatorial optimization, Eur. J. Oper. Res., $137(1)(2002), 50-71$.
E. Angel, E. Bampis and L. Gourves, Approximating the pareto curve with local search for bi-criteria TSP $(1,2)$ problem, Theoretical Computer Science, $310(1-3)(2004)$, $135-146$
T.F. Liang, Distribution planning decisions using interactive fuzzy multi-objective linear programming, Fuzzy Sets Syst., 157(2006), 1303-1316.
A. Rehmat, H. Saeed and M.S. Cheema, Fuzzy multiobjective linear programming approach for traveling salesman problem, Pak. J. Stat. Oper. Res., 3(2)(2007), 87-98.
B. Javadia, M. Saidi-Mehrabad, A. Haji, I. Mahdavi, F. Olai and N. Mahdavi-Amiri, No-wait flow shop scheduling using fuzzy multi-objective linear programming, $J$. Franklin Inst., 345(2008), 452-467.
S. Mukherjee and K. Basu, Application of fuzzy ranking method for solving assignment problems with fuzzy costs, International Journal of Computational and Applied Mathematics, $5(2010), 359-368$.
A. Chaudhuri and K. De, Fuzzy multi-objective linear programming for traveling sales man problem, Afr. $J$. Math. Comp. Sci. Res., 4(2)(2011), 64-70.
J. Majumdar and A.K. Bhunia, Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times, J. Comp. Appl. Math., 235(2011), 30633078.
Sepideh Fereidouni, Travelling salesman problem by using a fuzzy multi-objective linear programming, African Journal of Mathematics and Computer Science Research, $4(11)(2011), 339-349$.
Amit Kumar and Anil Gupta, Assignment and travelling salesman problems with co-efficient as LR fuzzy parameter, International Journal of Applied Science and Engineering, 10(3)(2012), 155-170.
R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24(1981), 143-161.
L.A. Zadeh, Fuzzy Logic and Its Applications, Academic Press, New York, 1965.
L.A.Zadeh, Fuzzy sets, Information and Control, $8(3)(1965), 338-353$
H.R. Maleki, Ranking functions and their applications to fuzzy linear programming, Far East J. Math. Sci., $4(2002), 283-301$
- NA
Similar Articles
- P. Selvakumar, A. Murugesan, Necessary and sufficient conditions for oscillation of solutions to second-order non-linear difference equations with delay argument , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- E. Thandapani, V. Balasubramanian, Some oscillation theorems for second order nonlinear neutral type difference equations , Malaya Journal of Matematik: Vol. 1 No. 03 (2013): Malaya Journal of Matematik (MJM)
- C. Soundara Rajan, A. Murugesan, Oscillatory and asymptotic behavior of solutions to second-order non-linear neutral difference equations of advanced type , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- B. Kamaraj, R. Vasuki , Oscillation criteria for nonlinear difference equations with superlinear neutral term , Malaya Journal of Matematik: Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
- Samir Dashputre, Padmavati, Kavita Sakure, On approximation of fixed point in Busemann space via generalized Picard normal \(s\)-iteration process , Malaya Journal of Matematik: Vol. 8 No. 03 (2020): Malaya Journal of Matematik (MJM)
- S.Rajan, K.Malathi, Oscillation theorems for second order neutral difference equations with “Maxima” , Malaya Journal of Matematik: Vol. 6 No. 02 (2018): Malaya Journal of Matematik (MJM)
- C. Jayakumar, A. Murugesan, Oscillation result for half-linear delay difference equations of second-order , Malaya Journal of Matematik: Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)
- Govindasamy Ayyappan, Gunasekaran Nithyakala, Oscillation of second order nonlinear difference equations with super-linear neutral term , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
- V. Agnes Sagaya Judy Lavanya, M.P. Jeyaraman, H. Aaisha Farzana, On certain geometric properties of generalized polylogarithm function , Malaya Journal of Matematik: Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
- Syamal K. Sen, J. Vasundhara Devi, R.V.G. Ravi Kumar, New limit definition of fractional derivatives: Toward improved accuracy and generalization , Malaya Journal of Matematik: Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.