On restrained edge dominating set of graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0801/0005

Abstract

For a graph $G=(V, E)$, a subset $D$ of $E$ is restrained edge dominating set of $G$ if every edge not in $D$ is adjacent to an edge in $D$ as well as an edge in $E-D$. The restrained edge domination number of $G$, denoted by $\gamma_{r e}(G)$ is the minimum cardinality of a restrained edge dominating set of $G$. Here, we characterize restrained edge dominating set and also investigate restrained edge domination number of some wheel related graphs.

Keywords:

Dominating set, restrained dominating set, restrained edge dominating set, restrained edge domination number

Mathematics Subject Classification:

Mathematics
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India.
  • P. D. Ajani Department of Mathematics,, Atmiya University, Rajkot - 360005, Gujarat, India.
  • Pages: 28-31
  • Date Published: 01-01-2020
  • Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)

S. Arumugam and S. Velammal, Edge Domination in Graphs, Taiwanese Journal of Mathematics, 2(1998), 173179.

G. S. Domke, J. H. Hattingh, S. T. Hedetiniemi, R. C. Laskar and L. R. Markus, Restrained domination in graphs, Discrete Mathematics, 203(1999), 61-69.

G. S. Domke, J. H. Hattingh, M. A. Henning and L. R. Markus, Restrained Domination in Graphs with Minimum Degree Two, J. Combin. Math.Combin. Comput., 35(2000), 239-254.

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1969.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

V. R. Kulli and N. D. Soner, Complementary Edge Domination in Graphs, Indian Journal of Pure and Applied Mathematics, 28(1997), 917-920.

S. Mitchell and S. Hedetniemi, Edge Domination in Trees, Congr. Numer, 19(1977), 489-509.

${ }^{[8]}$ N. D. Soner and S. Ghobadi, Restrained Edge Domination Number in Graphs, Adv. Stud. Contemp. Math., 19(2009), 143-149.

J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial $k$-trees, SIAM J. Discrete Mathematics, 10(1997), 529-550.

S. K. Vaidya and P. D. Ajani, Restrained Domination Number of Some Path Related Graphs, Journal of Computational Mathematica, 1(1) (2017), 114-121.

S. K. Vaidya and P. D. Ajani, On Restrained Domination Number of Graphs, International Journal of Mathematics and Soft Computing, 8(1) (2018), 17-23.

${ }^{[12]}$ S. K. Vaidya and P. D. Ajani, On Restrained Domination Number of Some Wheel Related Graphs, Malaya Journal of Matematik, 7(1) (2019), 104-107.

S. K. Vaidya and R. M. Pandit, Edge Domination in Some Path and Cycle Related Graphs, ISRN Discrete Mathematics, 2014(2014), 1-5.

M. Yannakakis and F. Gavril, Edge Dominating Sets in Graphs, SIAM Journal on Applied Mathematics, $38(3)(1980), 364-372$.

Metrics

Metrics Loading ...

Published

01-01-2020

How to Cite

S. K. Vaidya, and P. D. Ajani. “On Restrained Edge Dominating Set of Graphs”. Malaya Journal of Matematik, vol. 8, no. 01, Jan. 2020, pp. 28-31, doi:10.26637/MJM0801/0005.