Mod difference labeling of some classes of digraphs

Downloads

DOI:

https://doi.org/10.26637/MJM0801/0006

Abstract

A graph is a difference graph if there is a bijection $f$ from $V$ to a set of positive integers $S$ such that $x y \in E$ if and only if $|f(x)-f(y)| \in S$. A digraph $D=(V, E)$ is a mod difference digraph if there exist a positive integer $m$ and labeling $L: V \rightarrow\{1,2, \ldots, m-1\}$ such that $(x, y) \in E$ if and only if $L(y)-L(x) \equiv L(w)(\bmod m)$ for some $w \in V$. In this paper, we prove that the complete bipartite digraphs, oriented binary trees, ladder graphs and fan graphs are mod difference digraphs.

Keywords:

Difference labeling, mod difference labeling, digraphs.

Mathematics Subject Classification:

Mathematics
  • B Sooryanarayana Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore-560056, India
  • Sunita Priya D Silva Department of Mathematics, Sahyadri College of Engineering and Management, Mangalore-575009, India.
  • Pages: 32-36
  • Date Published: 01-01-2020
  • Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)

R.B. Eggleton and S.V. Gervacio, Some properties of difference graphs, Ars Combinatoria , 19(A)(1985), 113128.

S. V. Gervacio, Which wheels are proper autographs?, Sea Bull. Math., 7 (1983), 41-50.

G.S. Bloom, P.Hell and H. Taylor, Collecting autographs: $n$-node that have $n$-integers, Annals of New York Academy of Sciences, 314 (1979), 93-102.

F. Harary, Sum graphs and difference graphs, CongressusNumerantium, 72 (1990), 101-108.

S. M. Hegde and Vasudeva, Some structural properties of mod difference digraphs, (to appear).

S. M. Hegde and Vasudeva, On mod difference labelings of digraphs, AKCE J. Graphs Combin., 6(2009), 79-84.

H.Wang, B.Yao, and M.yao, Gernalized edge-magic total labellings of models from researching networks, Inform. Sci., 279(2014), 460-467.

B. Sooryanarayana Jayalakshmi M and P Devadas Rao, Outer mod sum labelings of a graph, Internatial Journalof Information Science and Computer Mathematics, 2(2) (2010), 87-102.

K. N. Meera and B. Sooryanarayana, Optimal outer sum number of a graphs, International Journal of Combinatorial Graph Theory and Applications , 2(4)(2011), , 23-35.

L. L. Fontanil R. and G. Panopio, Independent set and vertex covering in a proper monograph determined through a signature,Australasian Journal of Combinatorics , 59(1)(2014), 64-71.

M.A Seoud and E.F.Helmi, On difference graphs, 76(2016), 189-199.

S.V.Gervacio, Difference graphs, Proceedings of the Second Franco-Southeast Asian Mathematics Conferences, University of Philippines, 1982.

Metrics

Metrics Loading ...

Published

01-01-2020

How to Cite

B Sooryanarayana, and Sunita Priya D Silva. “Mod Difference Labeling of Some Classes of Digraphs”. Malaya Journal of Matematik, vol. 8, no. 01, Jan. 2020, pp. 32-36, doi:10.26637/MJM0801/0006.