Properties of disjunctive domination in product graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0801/0007

Abstract

In this paper properties of disjunctive domination in some graph products are studied. We examine whether disjunctive domination number is multiplicative with respect to different graph products, that is, $\gamma_2^d\left(G_1 * G_2\right) \geq$ $\gamma_2^d\left(G_1\right) \gamma_2^d\left(G_2\right)$ for all graphs $G_1$ and $G_2$ or $\gamma_2^d\left(G_1 * G_2\right) \leq \gamma_2^d\left(G_1\right) \gamma_2^d\left(G_2\right)$ for all graphs $G_1$ and $G_2$ where $*$ denotes lexicographic, tensor, strong or Cartesian product of graphs. Some other inequalities involving disjunctive domination number of product graphs and the graphs attaining these inequalities are also given.

Keywords:

Domination, disjunctive domination, disjunctive domination number, graph product

Mathematics Subject Classification:

Mathematics
  • Pages: 37-41
  • Date Published: 01-01-2020
  • Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)

F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, MA/Menlo Park, CA/London, 1969.

Teresa W. Haynes, Stephen T. Hedetniemi, Peter J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

Sandra M Hedetniemi, Stephen T. Hedetniemi, J Knisely, D. F Rall, Secondary domination in graphs, AKCE J. Graphs Comb., 5(2008), 103-115.

Wayne Goddard, M. A Henning, Charles A McPillan, The Disjunctive Domination Number of a Graph, Quaest. Math., 37(4)(2014), 547-561.

M.A Henning, Sinclair A Marcon, Domination versus Disjunctive Domination in Graphs, Quaest. Math., 2015, $1-13$.

M. A Henning, Viroshan Naicker, Bounds on the Disjunctive Total Domination number of a Tree, Discussions Mathematicae Graph Theory, 36(2016), 153-171.

R. Hammack, W. Imrich, S. Klavzar, Handbook of Product Graphs, Discrete Mathematics and its Applications, CRC Press, Second Edition, 2011

Metrics

PDF views
37
Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20267.0
|

Published

01-01-2020

How to Cite

A. Lekha, and K.S. Parvathy. “Properties of Disjunctive Domination in Product Graphs”. Malaya Journal of Matematik, vol. 8, no. 01, Jan. 2020, pp. 37-41, doi:10.26637/MJM0801/0007.