Nano generalized e-closure and nano generalized e-interior
Downloads
DOI:
https://doi.org/10.26637/MJM0801/0016Abstract
In this paper we discuss some basic topological properties of generalizations of closure, interior, neighborhood, limit points, derived set, frontier, exterior and border of the sets via nano generalized e (resp. M)-open sets in nano topological spaces.
Keywords:
Nano generalized e (resp. M )-neighbourhood, nano generalized e (resp. M )-exterior, nano generalized e (resp. M)-frontierMathematics Subject Classification:
mathematics- Pages: 89-98
- Date Published: 01-01-2020
- Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
S. Bamini, M. Saraswathi, A. Vadivel and G. Saravanakumar, Generalizations of Nano δ-closed Sets in Nano Topological Spaces, Adalya Journal, 8(11)(2019), 488493.
K. Bhuvaneshwari and K. MythiliGnanapriya,Nano Generalized closed sets, International Journal of Scientific and Research Publications, 4(5)(2014), 1-3.
M. Caldas, M. Ganster, D.N. Georgiou, S. Jafari and T. Noiri, θ-semi open sets and separation axioms in topological spaces, Carpathian Journal of Mathematics, 24(1)(2008), 12-23.
Carmel Richard, Studies on Nano Topological Spaces, Ph.D Thesis, Madurai Kamaraj University, India, 2013.
P. Dhanasekaran, A. Vadivel, G. Saravanakumar and M. Angayarkanni, Generalizations of Nano θ -closed sets in Nano Topological Spaces, Journal of Information and Computational Science, 9(11)(2019), 669-675.
M. LellisThivagar, and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(2013), 31-37.
P. Manivannan, A. Vadivel and V. Chandrasekar, Nano generalized e-closed sets in nano topological spaces, Submitted.
A. Padma, M. Saraswathi, A. Vadivel and G. Saravanakumar, New Notions of Nano
M-open Sets, Malaya Journal of Matematik, S(1)(2019), 656-660.
V. Pankajam and K. Kavitha, δ open sets and δ nano continuity in δ nano topological space, International Journal of Innovative Science and Research Technology, 2(12)(2017), 110-118
J. H. Park, B. Y. Lee and M. J. Son, On δ-semi open sets in topological space, The Journal of the Indian Academy of Mathematics, 19(1)(1997), 59-67.
S. Raychaudhri and M. N. Mukherjee, On δ-almost continuity andδ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(4)(1993), 357-366.
A. Revathy and I. Gnanambal, On Nano β- open sets, Int. Jr. of Engineering, Contemporary Mathematics and Sciences, 1 (2)(2015), 1-6.
M. Sujatha, M. Angayarkanni, New Notions via Nano θ- open Sets With an Application in Diagnosis of Type - II Diabetics, Adalya Journal, 8(10)(2019), 643-651.
- NA
Similar Articles
- Hülya Gültekin C¸itil , An approach to a fuzzy problem using the fuzzy Laplace transform under the generalized differentiability , Malaya Journal of Matematik: Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.