Separation axioms in ideal bitopological spaces
Downloads
DOI:
https://doi.org/10.26637/MJM0801/0017Abstract
In this paper, we introduce and study $(i, j)$-semi- $\mathscr{I}-R_0$ and $(i, j)$-semi- $\mathscr{I}-R_1$ spaces. Also we obtain several characterizations of this axioms.
Keywords:
Ideal bitopological spaces, (i, j) -semi- I -closed set, (i, j) -semi- I -open set, (i, j) -semi- I -closure, (i, j) -semi- I - kernalMathematics Subject Classification:
Mathematics- Pages: 99-103
- Date Published: 01-01-2020
- Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
M. Caldas, S. Jafari and N. Rajesh, Semiopen sets in ideal bitopological spaces, to appear in CUBO Mathematics Journal, 2020.
A. S. Davis, Indexed systems of neighbourhoods for general topological spaces, Amer. Math. Monthly, 68(1961), 886-893.
D. Jankovic and T. R. Hamlett, New topologies from old via ideals, American Math. Monthly, 97(1990), 295-310.
J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
M.Mrs ̂evic ̂, On pairwise R_0 and pairwise R_1 bitopologicalcal spaces, Bull. Math. De la Soc. Sci. Mathe. de. la. R. S. de Roumanie Tome, 30(78)(1986), 17-23.
K. Kuratowski, Topology, Academic press, New York, 1966.
P. Maragatha Meenakshi and A. Vanitha, Bitopologicalseparatin axioms (submitted).
M. G. Murdeshwar and S. A. Naimpally, $R_1$ topological spaces, Canad. Math. Bull., 9(1966), 521-523.
N. A. Shanin, On separability in topological spaces, Dokl. Akad. Sciencies. USSR, 38(1943), 166-169.
R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.