Fixed point theorems for mappings satisfying implicit relations in multiplicative metric spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0801/0036

Abstract

Fixed point theorems in metric spaces involving implicit relations were introduced by Popa. We modify such a theorem by Berinde so that it applies to pairs of self mappings in multiplicative metric spaces. An illustrative example is given on the use of the theorem.

Keywords:

Implicit relations, multiplicative metric spaces, common fixed points.

Mathematics Subject Classification:

Mathematics
  • Pages: 216-221
  • Date Published: 01-01-2020
  • Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)

M. Abbas, B. Ali, I. Yusuf Suleman, Common fixed points of locally contractive mappings in multiplicative metric spaces with application, I. J. Math. & Math. Sci. Vol., Article ID 218683, 7 pages.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équationsintégrales, Fund. Math., (1922), 133-181.

A. Bashirov,E. Karplnara, A. Ozyaplca, Multiplicative calculus and its applications, J. Math. Anal. & Appl., 337 (2008), 36-48.

V. Berinde, Stability of Picard iteration for contractive mappings satisfying an implicit relation, Carpathian J. Math., 27(1) (2011), 13-23.

V. Berinde, Approximating fixed points of implicit almost contractions, Hacet J Math Stat., 40 (2012), 93102.

L. Florack, H. V. Assen, Multiplicative calculus in biomedical image analysis, Journal of Mathematical Imaging and Vision, 42(1) (2012), 64 -75.

Lj. Gajić, V. Rakočević, Pair of non-self mappings and common fixed points, Appl. Math. Comp., 187(2007), 999-1006.

M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA (1972).

M. Imdad, S. Kumar, Rhoades-type fixed-point theorems for a pair of non-self mappings, Comp. Math. Appl., $46(2003), 919-927$.

Y. Jiang, F. Gu, Common coupled fixed point results in multiplicative metric spaces and applications, J. Nonlinear Sci. Appl., 10(2017), 1881-1895

M. Özavşar, C. Çevikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces, (2012), ArXiv.

V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc.St., Ser. Matem., 7 (1997), 129133.

S. Reich, Some remarks concerning contraction mappings, Canadian Mathematical Bulletin, 14(1971), 121124.

Metrics

Metrics Loading ...

Published

01-01-2020

How to Cite

Santosh Kumar, and Terentius Rugumisa. “Fixed Point Theorems for Mappings Satisfying Implicit Relations in Multiplicative Metric Spaces”. Malaya Journal of Matematik, vol. 8, no. 01, Jan. 2020, pp. 216-21, doi:10.26637/MJM0801/0036.