On certain subclass of normalized analytic function associated with Rusal differential operator

Downloads

DOI:

https://doi.org/10.26637/MJM0801/0040

Abstract

In this article the author discusses the two subclasses namely $\check{K}_p\left(A_\lambda^n ; \gamma, \mu, m, \beta\right)$ and $K_p\left(A_\lambda^m ; \gamma, \mu, m, \beta\right)$ of normalized analytic functions. With convex combination of Ruschwey and Al-Oboudi differential operator we derived Rusal differential operator. Two new subclasses $\check{K}_p\left(A_\lambda^n ; \gamma, \mu, m, \beta\right)$ and $K_p\left(A_\lambda^n ; \gamma, \mu, m, \beta\right)$ are studied with help of Rusal differential operator.Growththeorem, Closure theorem, Integral mean inequality, extreme point theorem, coefficient inequality, convolution and distortion theorem for given class are examined.

Keywords:

Analytic function, Rusal differential operator

Mathematics Subject Classification:

Mathematics
  • T. G. Thange Department of Mathematics, Yogeshwari Mahavidyalaya, Ambejogai-431517, Maharashtra, India.
  • S. S. Jadhav Department of Mathematics, Sundarrao More Arts, Commerce, and Science (Sr.) College, Cholai- 402303, Maharashtra, India.
  • Pages: 235-242
  • Date Published: 01-01-2020
  • Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)

F.M. AL-Oboudi, On univalent functions defined by a generalizedsalagean operator, International.J. Math. and Mathematical Sciences, 27(2004), 1429-1436.

P.L. Duren, Univalent Functions, Springer-Verlag, New York, USA, 1983.

St. Rusceweyh, New criteria for univalent functions, Proc. Amer. Math.Soc., 49(1975), 109-115.

J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(1925), 481-519.

S.S. Eker and H.O. Guney, A new Journal of Inequalities and Applications, (2008), Art. ID 452057.

T. Hayami and S.Owa, Generalizedhankel determinant for certain classes, Int. J. Math. Analysis, 4(52)(2010), 2573-2585.

S. Khairnar and M. More, On certain subclass of analytic functions involving the Al-Oboudi differential operator, Journal Inequlity in Pure and Applied Mathematics, 10(2)(2009), 11-16.

Metrics

PDF views
31
Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20265.0
|

Published

01-01-2020

How to Cite

T. G. Thange, and S. S. Jadhav. “On Certain Subclass of Normalized Analytic Function Associated With Rusal Differential Operator”. Malaya Journal of Matematik, vol. 8, no. 01, Jan. 2020, pp. 235-42, doi:10.26637/MJM0801/0040.