An application of a new coupled fixed point theorem on nonlinear integro-differential equations

Downloads

DOI:

https://doi.org/10.26637/MJM0801/0042

Abstract

In this paper, we define the concept of the diameter for an orbit at a point, with respect to a context, which is entirely different from the one available in the literature. As a sequel, we prove the existence of a coupled fixed point for a mapping defined on a b-metric space, using a Meir-Keeler type of contractive condition. Finally, we give an application to prove the significance of the theory developed.

Keywords:

Diameter, Coupled fixed point, Complete b-metric space, Integro-differential equation.

Mathematics Subject Classification:

Mathematics
  • Antony Santhi School of Mathematics, Madurai Kamaraj University, Madurai- 625 021,Tamil Nadu, India.
  • Pages: 248-253
  • Date Published: 01-01-2020
  • Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)

G. V. R. Babu, D. T. Mosissa, Fixed Point in b-metric space via Simulation Functions, Novi Sad Journal of Mathematics, (2017), 133-147.

I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. UnianowskGos. Ped. Inst., 30, (1989), 26-37.

F. F. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30, (1968), 27-35.

V. W. Bryant, A remark on a fixed point theorem for iterated mappings, Am. Math. Mon., 75, (1968), 399-400.

D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20, (1969), $458-464$.

R. Caccioppoli, Un teoremageneralesullesistenza de elementeuniti in una transformazionefunzionale, Rend. Acad. Naz. Linzei., 11, (1930), 31-49.

J. Caristi, Fixed point theorem for mapping satisfying inwardness conditions, Trans. Am. Math. Soc., 215, (1976), 241-251.

L. B. Ciric, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45, (1974), 267-273.

S. Czerwik, Contraction Mappings in b-metric Spaces, Acta Mathematica et Informatica Ostraviensis, 1, (1993), 5-11.

M. Demmaa, R. Saadatib, P. Vetroa, Fixed Point Results on $b$-Metric Space via Picard Sequences and b-Simulation Functions, Iranian Journal of Mathematical Sciences and Informatics, 11, (2016), 123-136.

M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40, (1973), 604-608.

T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, 65, (2006), 1379-1393.

M. Hegedus and T. Szilagyi, Equivalent conditions and a new fixed point theorem in the theory of contractive type mappings, Math.Jpn., 25, (1980), 147-157.

J. Jachymski and I. Jozwik, Nonlinear contractive conditions: a comparison and related problems Fixed Point Theory and Its Applications, Polish Acad. Sci, 77, (2007), 123-146.

R. Kannan, Some results on fixed points U II, $A m$. Math. Mon., 76, (1969), 405-408.

A. Meir and E. Keeler, A theorem on contraction mapping, J.Math.Anal.Appl., 213, (1969), 348-354.

J. Matkowski, Integrable solutions of functional equations, Diss. Math., 127, (1975).

E. Rakotch, A note on contractive mappings, Proc. Am. Math. Soc., 13, (1962), 459-465.

B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α-ψ-contractive type mappings, Nonlinear Anal., 75, (2012), 2154-2165.

W. Sintunavarat, P. Kumam and Y. J. Cho,Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory and Applications, 170, (2012), 1-16.

Y. Su, A. Petrusel and Y. Jen-chih, Multivariate fixed point theorems for contractions and nonexpansive mappings with applications, Fixed Point Theory and Applications, 9, (2016), 1-19.

T. Suzuki, A generalization of Hegedus-Szilagyi's fixed point theorem in complete metric spaces, Fixed Point Theory and Applications, 1, (2018), 1-10.

Metrics

Metrics Loading ...

Published

01-01-2020

How to Cite

Antony Santhi. “An Application of a New Coupled Fixed Point Theorem on Nonlinear Integro-Differential Equations”. Malaya Journal of Matematik, vol. 8, no. 01, Jan. 2020, pp. 248-53, doi:10.26637/MJM0801/0042.