Mixed problem with an pure integral two-space-variables condition for a third order fractional parabolic equation
Downloads
DOI:
https://doi.org/10.26637/MJM0801/0044Abstract
In this paper, we establish sufficient conditions for the existence and uniqueness of a solution, in a functional weighted Sobolev space, for Caputo fractional differential equations with integral conditions. The proof uses a functional analysis method presented, which it based on energy inequality and the density of the range of operator generated by the problem.
Keywords:
fractional Caputo derivative, Energy inequality, density of operator, the rang of operator., Fractional differential equationsMathematics Subject Classification:
Mathematics- Pages: 258-271
- Date Published: 01-01-2020
- Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
B. Ahmad, J. Nieto ; Existence results for nonlinear boundary value problems of fractional integro-differential equations with integral boundary conditions, Boundary Value Problems Vol. 2009 (2009), Article ID 708576, 11 pages.
A. Anguraj, P. Karthikeyan ; Existence of solutions for fractional semilinear evolution bound- ary value problem, Commun. Appl. Anal. 14 (2010) 505-514.
M. Belmekki, M. Benchohra ; Existence results for fractional order semilinear functional differential equations, Proc. A. Razmadze Math. Inst. 146 (2008) 9-20.
M. Benchohra, J. R. Graef, S. Hamani ; Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal. 87 (2008) 851-863.
N.E. Benouar and N.I Yurchuk, Mixed problem with an integral conditions for parabolic equations with the Bessel operator, Differentsial' nyeUravneniya, 27 (1991). 2094-2098.
A. Bouziani and N-E Benouar Mixed problem with integral conditions for a third order parabolic equation, Kobe J. Math., 15(1)(1998), 47-58.
A. Bouziani and N.E. Benouar, Problémemixte avec conditions intégrales pour uneclassedéquationsparaboliques, Comptesrendus de l'Academie des Sciences, Paris t. 321, Série I, (1995), 1177-1182.
A. Bouziani, Mixed problem for certain nonclassical equations with a small parameter, Bulletin de la Classe des Sciences, Académie Royale de Belgique, 5(1994), 389-400.
A. Bouziani, Solution forte d'un problème de transmission parabolique-hyperbolique pour une structure pluridemensionnelle, Bullein de la Classe des Sciences Académie Rovale de Belgique. 7(1996), 369-386.
A. Bouziani, Mixted problem with integral conditions for a certain parabolic equation, J. App. Math. and Stoch. Anal., 9(1996), 323-330.
A. Bouziani; On a classofnon linear reaction-diffusion systems with nonlocal boundary conditions, Abstrat and Applied Analysis, 200(9)(2004), 793-813.
J. R Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21(1963), $155-160$.
V. Daftardar-Gejji, H. Jafari ; Boundary value problems for fractional diffusion-wave equation, Aust. J. Math. Anal. Appl. 3 (2006) 1-8.
M. Z. Djibibe, K. Tcharie and N. I. Yurchuk ; Existence, Uniqueness and Continuous Dependance of Solution of Nonlocal Boundary Conditions of Mixed Problem for Singular Parabolic Equation in Nonclassical Function Spaces, Pioneer Journal of Advances in Applied Mathematics Volume 7, number 1,2013, p-7-16
M. Z Djibibe, K. Tcharie, On the Solvability of an Evolution Problem with Weighted Integral Boundary Conditions in Sobolev Function Spaces with a Priori Estimateand Fourier's Method, British Journal of Mathematics & Computer Science, 3(4): 801-810, 2013.
M. Z. Djibibe, K. Tcharie and N. I. Yurchuk ; Continuous dependence of solutions to mixed boundary value problems for a parabolic equation, Electronic Journal of Differential Equations, Vol. 2008(2008), No. 17, p. 1-10.
N. J. Ford,J. Xiao, Y. Yan ; A finite element method for time fractional partial differential equations. Fractional Calculus and Applied Analysis. 14(3) (2011), 454-474. doi : 10.2478/s13540-011-0028-2.
K. M. Furati, N. Tatar ; Behavior of solutions for a weighted Cauchy-type fractional differ- ential problem, J. Fract. Calc. 28 (2005) 23-42.
K. M. Furati, N. Tatar; An existence result for a nonlocal fractional differential problem, J. Fract. Calc. 26 (2004) 43-51.
J. H. He ; Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating Engineering'98, Dalian, China, pp. 288-291 (1998)
J. H. He ; Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol15, (1999), 86-90.
. H. He ; Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng., 167(1998), 57-68.
${ }^{[23]} mathrm{R}$. W. Ibrahim, S. Momani; On existence and uniqueness of solutions of a class of fractional differential equations, Journal of Mathematical Analysis and Applications, 334(1)(2007), 1-10.
N.I. Ionkin, Solution of boundary value problem in heat conduction theory with nonlocal boundary conditions, Differentsial'nyeUravneniya, 13(1977), 294-304.
A. A. Kilbas, S. A. Marzan; Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differ. Equ. 41(1)(2005), 84-89.
N.I. KKamynin, A boundary value problem in theory of the eat conduction with non- classical boundary conditions, Th. Vychisl. Mat. Mat. Fiz., 43(1964), 1006-1024.
X. J. Li, C. J. Xu; Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Communications in Computational Physics, 8(5)(2010), 1016-1051.
Oussaeif Taki eddine and AbdelfatahBouziani: Mixed problem with an two- space- variables conditions for a third order parabolic equation, International journal of Analysis and Applications; 31 october 2016.
Taki- EddineOussaeif and AbdelfatahBouziani, Existence and uniqueness of solutions to parabolic fractional differential equations with integral conditions, Electronique Journal of Equations, Vol. 2014 (2014), No. 179, pp 1-10. ISSN: 1072-6691.
N.I. Yurchuk, Mixed problem with an integral condition for a certain parabolic equations, Differentsial' nyeUrav-neniya, 22(1986), 2117-2126
Similar Articles
- Anjaneyulu Mekala, U. Vijaya Chandara Kumar, R Murali, Domination and s-path domination in some brick product graphs , Malaya Journal of Matematik: Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.