Magnetic trajectories on oriented surfaces
Downloads
DOI:
https://doi.org/10.26637/MJM0801/0045Abstract
We study magnetic trajectories of a magnetic field on an oriented surface $S$ in three-dimensional Euclidean space. Defining the Lorentz force of a magnetic field on $S$, we give the Lorentz force equation for the associated magnetic trajectories. We have derived the Killing magnetic flow equations with regard to the geodesic curvature, geodesic torsion and normal curvature of the curve $\gamma$ on $S$. Finally we examine magnetic trajectories on some familiar surfaces in three-dimensional Eucliedan space.
Keywords:
Magnetic curve, Lorentz force equation, geodesic curvatureMathematics Subject Classification:
Mathematics- Pages: 272-276
- Date Published: 01-01-2020
- Vol. 8 No. 01 (2020): Malaya Journal of Matematik (MJM)
M. Barros, J. L. Cabrerizo, M. Ferrandez and A. Romero, Magnetic vortex filament flows, Journal of Mathematical Physics, 48(2007), 082904.
M. Barros and A. Romero, Magnetic vortices, Europhysics Letters, 77(2007),3402.
M. Ben-Chen, A. Butscher, J. Solomon and L. Guibas, Discrete Killing Vector Fields and Patterns on Surfaces, Comp. Graph. Forum, 29(5) (2010), 1701-1711.
Z. Bozkurt, İ. Gök, Y. Yaylı and F. N. Ekmekçi, A new approach for magnetic curves in 3D Riemannian manifolds, Journal of Mathematical Physics, 55(2014), 053501.
J. L. Cabrerizo, Magnetic fields in 2D and 3D sphere, Journal of Nonlinear Mathematical Physics, 20(3)(2013), $440-450$
$[6]$ M. Do Carmo, Differential geometry of curves and surfaces, Printice-Hall, Inc.,Englewood Cliffs, New Jersey, 1976.
S. L.Dructă-Romaniuc and M. I. Munteanu, Magnetic curves corresponding to Killing magnetic fields in E3, Journal of Mathematical Physics, 52(11)(2011), 113506.
Z. Ozdemir, İ. Gök, Y. Yaylıand F. N, Ekmekci, Notes on magnetic curves in 3D semi-Riemannian manifolds, Turkish Journal of Mathematics, 39(3)(2015), 412-426.
T. Turhan, Magnetic trajectories in three-dimensional Lie groups, Math. Meth. in the App. Sci., 43(2020), 27472758.
T. Turhan and G. ÖzkanTükel, Spherical indicatrix magnetic trajectories, International Science Technology and Social Sciences Symposium on Current DevelopmentsBİLTEK, 20-22 December, 2019, Ankara, Turkey.
A. Yücesan, G, Özkan and Y. Yay, Relaxed Hyperelastic Curves, Annales PoloniciMathematici, 102(3)(2011), 223-230.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.