QSPR analysis of Alkanes with certain degree based topological indices

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0003

Abstract

The topological indices are the important tools in QSPR studies. Recently Hosamani et. al., [11] studied the QSPR analysis of some degree based topological indices by selecting the linear model: \(P=a+(T I) b\), where \(P\) is the physical property and \(T I\) is the topological index. In this paper, we carry forward their work by studying the quadratic and logarithmic models for the set 67 alkanes.

Keywords:

Topological indices, QSPR-analysis, octane isomers

Mathematics Subject Classification:

Mathematics
  • K.N. Anil Kumar Department of Mathematics, Bapuji Institute of Engineering and Technology, Davanagere- 577004, Karnataka, India and affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India.
  • N.S. Basavarajappa Department of Mathematics, Bapuji Institute of Engineering and Technology, Davanagere- 577004, Karnataka, India and affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India. https://orcid.org/0000-0002-2448-2054
  • M.C. Shanmukha Department of Mathematics, Jain Institute of Technology, Davanagere- 577003, Karnataka, India and affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India. https://orcid.org/0000-0002-9560-1209
  • Pages: 314-330
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

E. Estrada, Atom-bond connectivity and the energetic of branched alkanes. Chemical Physics Letters, 463(2008) 422-425.

S. Fajtlowicz, Harmonic Index, Congr. Numer., 60 (1987), $187-190$.

B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index. Journal of Mathematical Chemistry, 48(2010), 370-380.

I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538.

I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86(4)(2013), 351-361.

S. M. Hosamani and I. Gutman, Zagreb Indices of transformation graphs and total transformation graphs, Appl. Math. Compt., 247 (2014), 1156-1160.

S. M. Hosamani, B. Basavanagoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74(1)(2015), 97-101.

S. M. Hosamani, S. H. Malghan and I. N. Cangul, The first geometric-arithmetic index of graph operations, Advances and Applications in Mathematical Sciences, $14(6)(2015), 155-163$.

S. M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput., 1-9(2016), 12091215.

S. M. Hosamani Correlation of domination parameters with physicochemical properties of octane isomers. Applied Mathematics and Nonlinear Sciences, 1 (2016), 345-352.

S. M. Hosamani, D. M. Perigidad, S. Y. Jamagoud, Y. B. Maled and S. Gavade, QSPR Analysis of Certain Degree Based Topological Indices, J. Stat. Appl. Pro., 6(2)(2017), 361-371.

S. M. Hosamani, V.B. Awati and R. M. Honnamore, Estimation of numerical invariants associated with certain nanostructures and dendrimers via degree based descriptors, Journal of Mathemaical Chemistry, (Accepted).

M. Randić, On characterization of molecular branching, J. Am. Chem. Soc.. 97(1975), 6609-6615.

D. Vukièević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369-1376.

B. Zhou and N. Trinajstić, Sum-connectivity index, J. Math. Chem. 46(2009), 1252-1260.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

K.N. Anil Kumar, N.S. Basavarajappa, and M.C. Shanmukha. “QSPR Analysis of Alkanes With Certain Degree Based Topological Indices”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 314-30, doi:10.26637/MJM0802/0003.