Some results of Morse functions in digital images

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0005

Abstract

In many years authors have adapted some notions of topology and combinatorial topology to the digital topology. In this paper we apply some definition of discrete Morse theory to the digital topology. We define a new definition of adjacency relation to show that digital subcomplexes are digitally homotopy equivalent. We conclude that if there is no digitally critical simplex in the digital interval \([m, n]_{\mathbb{Z}}\), then the digital subcomplexes \(K(m)\) and \(K(n)\) are digitally homotopy equivalent.

Keywords:

digital morse theory, digital topology, digital simplicial complex

Mathematics Subject Classification:

Mathematics
  • Pages: 343-349
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

A. Arslan, I. Karaca and A. Oztel, Homology groups of n-dimensional digital images XXI, Turkish National Mathematics Symposium 2008, B1-13

L. Boxer, Digitally continuous functions, Pattern Recognition Letters, 15 (1994), 833-839.

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision, 10 (1999), 51-62.

L. Boxer, Properties of digital homotopy, J. Math. Imaging Vision, 22 (2005), 19-26.

L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vision, 24 (2006), 167-175.

L. Boxer, Digital products, wedges, and covering spaces, J. Math. Imaging Vision, 25 (2006), 159-171.

L. Boxer and I. Karaca, The Classification of digital covering spaces, J. Math. Imaging Vision, 32(1) (2008), 23-29.

L. Boxer, Continuous maps on digital simple closed curves, Applied Mathematics, 1 (2010), 377-386.

L. Boxer, I. Karaca and A. Oztel, Topological invariants in digital images, Journal of Mathematical Sciences: Advances and Applications, 11(2) (2011), 109-140.

L. Boxer and P. C. Staecker, Fundamental groups and Euler characteristics of sphere-like digital images. Appl. Gen. Topol., 17(2) (2016), 139-158.

R. Forman, Morse theory for cell complexes. Adv. Math., 34 (1998), 90-145.

R. Forman, A user's guide to discrete Morse theory. Sem. Lothar. Combin, 48 (2002).

$[13]$ S. E. Han, Non-product property of the digital fundamental group, Information Sciences, 171 (1-3) (2005),73-91.

G. T. Herman, Oriented surfaces in digital spaces.CVGIPGraphical Models and Image Processing, 55(5) (1993), 381-396.

E. Khalimsky, Motion, deformation, and homotopy in finite spaces. Proceedings IEEE International Conference on Systems, Man, and Cybernetics, Boston, (1987), 227234.

T. Y. Kong, A digital fundamental group, Computers and Graphics, 13 (2) (1989), 159-166.

A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86(8) (1979), 621-630.

A. Rosenfeld, Continuous functions on digital pictures. Pattern Recognition Letters, 4 (3) (1986), 177-184.

E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

Ismet Karaca, Tane Vergili, Gokhan Temizel, and Hatice Sevde Denizalti. “Some Results of Morse Functions in Digital Images”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 343-9, doi:10.26637/MJM0802/0005.