Note on generating function of higher dimensional bell numbers

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0009

Abstract

In this paper, we study the generating function of the Higher dimensional Bell number, which are arises as dimensions of the class partition algebras an important subalgebra of the tensor product partition algebra\($P_k(x) \otimes P_k(y)\), denoted by \(P_k(x, y)\).

Keywords:

Partition algebra, Bell number, Stirling number, wreath product

Mathematics Subject Classification:

Mathematics
  • Pages: 369-372
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

Amritanshu Prasad, Equivalence Classes of Nodes in Tree and Rational Generating Functions, 2014, http://arxiv.org/abs/1407.5284.

C. Berg and C. Stump, etal, The Combinatorial Statistic Finder, 2014, http:/lfindstat.org.

V.F.R Jones, The Potts model and the symmetric group, in "Subfactors: Proceedings of the Taniguchi Symposium on Operater Algebra, Kyuzeso, 1993," pp. 259 -267, World Scientific, River edge, NJ,1994.

A. J. Kennedy, Class partition algebras as centralizer algebras, Communications in Algebra, 35(2007), 145170.

P. P. Martin and A. Elgamal, Ramified partition algebras, Math. Z., 246(2004), 473-500, (math.RT/0206148).

N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences., www.research.att.com/njas/sequences/.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2020

How to Cite

A. Joseph Kennedy, P. Jaish, and P. Sundaresan. “Note on Generating Function of Higher Dimensional Bell Numbers”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 369-72, doi:10.26637/MJM0802/0009.