Note on generating function of higher dimensional bell numbers

Downloads

DOI:

https://doi.org/10.26637/MJM0802/0009

Abstract

In this paper, we study the generating function of the Higher dimensional Bell number, which are arises as dimensions of the class partition algebras an important subalgebra of the tensor product partition algebra$Pk(x)Pk(y)$Pk(x)Pk(y), denoted by Pk(x,y)Pk(x,y).

Keywords:

Partition algebra, Bell number, Stirling number, wreath product

Mathematics Subject Classification:

Mathematics
  • Pages: 369-372
  • Date Published: 01-04-2020
  • Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)

Amritanshu Prasad, Equivalence Classes of Nodes in Tree and Rational Generating Functions, 2014, http://arxiv.org/abs/1407.5284.

C. Berg and C. Stump, etal, The Combinatorial Statistic Finder, 2014, http:/lfindstat.org.

V.F.R Jones, The Potts model and the symmetric group, in "Subfactors: Proceedings of the Taniguchi Symposium on Operater Algebra, Kyuzeso, 1993," pp. 259 -267, World Scientific, River edge, NJ,1994.

A. J. Kennedy, Class partition algebras as centralizer algebras, Communications in Algebra, 35(2007), 145170.

P. P. Martin and A. Elgamal, Ramified partition algebras, Math. Z., 246(2004), 473-500, (math.RT/0206148).

N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences., www.research.att.com/njas/sequences/.

  • NA

Metrics

PDF views
28
Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20266.0
|

Published

01-04-2020

How to Cite

A. Joseph Kennedy, P. Jaish, and P. Sundaresan. “Note on Generating Function of Higher Dimensional Bell Numbers”. Malaya Journal of Matematik, vol. 8, no. 02, Apr. 2020, pp. 369-72, doi:10.26637/MJM0802/0009.