F-index of graphs based on four operations related to the lexicographic product
Downloads
DOI:
https://doi.org/10.26637/MJM0802/0013Abstract
A new branch of mathematical chemistry, known as chemical graph theory which deals with the non trivial applications of graph theory to solve molecular problems. A topological index of a graph is a real number which is fixed under graph isomorphism. The forgotten topological index or F-index of a graph is defined as the sum of cubes of the degree of all the vertices of the graph. In this paper we study the F-index of four operations related to the lexicographic product on graphs.
Keywords:
Topological indices, Graph operations, Lexicographic productMathematics Subject Classification:
mathematics- Pages: 397-404
- Date Published: 01-04-2020
- Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535-538.
M.H. Khalifeha, H. Yousefi-Azaria and A.R. Ashrafi, The first and second Zagreb indices of some graph operations. Discrete Appl. Math., 157(4)(2009), 804-811.
H. Deng, D. Sarala, S.K. Ayyaswamy and S. Balachandran, The Zagreb indices of four operations on graphs. Appl. Math. Comp., 275(2016), 422-431.
B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53(4)(2015), 1184-1190.
H. Abdoa, D. Dimitrov and I. Gutman On extremal trees with respect to the F-index, arXiv:1509.03574v2, (2015).
N. De, S.M.A. Nayeem and A. Pal, F-index of some graph operations, Discrete Math. Algorithm Appl., 8(2)(2016), doi :10.1142/S1793830916500257.
N. De and S.M.A. Nayeem, Computing the F-index of nanostar dendrimers, Pac. Sci. Rev. A: Nat. Sci. Eng., doi:10.1016/j.psra.2016.06.001.
${ }^{[8]}$ N. De, S.M.A. Nayeem and A. Pal The F-coindex of some graph operations. Springer Plus, 5(2016), doi: 10.1186/s40064-016-1864-7.
N. De, F-index of Total Transformation Graphs, arXiv:1606.05989v1, (2016).
N. De, F-Index of Four Operations on Graphs. arXiv:1611.07468v1, (2016).
X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH. Commun. Math. Comput., 54(2005), 195-208.
N. De, A. Pal and S.M.A. Nayeem, The irregularity of some composite graphs, Int. J. Appl. Comput. Math., doi: 10.1007 / s40819-015-0069-z.
B. Basavanagoud and S. Patil, Multiplicative Zagreb indices and coindices of some derived graphs, Opuscula Math., 36(3)(2016), 287-299.
N. De, Narumi-Katayama index of some derived graphs, Bulletin Int. Math. Virt. Inst., 7(2017), 117-128.
W. Yan, B.Y. Yang and Y.N. Yeh, The behavior of Wiener indices and polynomials of graphs under five graph decorations, Appl. Math. Lett., 20(2007), 290-295.
M. Eliasi and B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math., 157(2009), 794-803.
S, Li and G. Wang, Vertex PI indices of four sums of graphs, Discrete Appl. Math., 159(2011), 1601-1607.
M. Metsidik, W. Zhang and F. Duan, Hyper and reverse Wiener indices of F-sums of graphs, Discrete Appl. Math., 158, (2010), 1433-1440.
B. Eskender and E. Vumar, Eccentric connectivity index and eccentric distance sum of some graph operations, Trans. comb., 2(1)(2013), 103-111.
M. An, L. Xiong and K.C. Das, Two Upper Bounds for the Degree Distances of Four Sums of Graphs, Filomat, 28(3)(2014), 579-590.
D. Sarala, H. Deng, S.K. Ayyaswamya and S. Balachandrana, The Zagreb indices of graphs based on four new operations related to the lexicographic product, Appl. Math. Comput., 309(2017), 156-169.
- NA
Similar Articles
- Abdelouaheb Ardjouni, Ahcene Djoudi, Positive solutions for first-order nonlinear Caputo-Hadamard fractional differential equations , Malaya Journal of Matematik: Vol. 8 No. 02 (2020): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.